欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

2.已知f(x)是定義在R上的奇函數(shù),當(dāng)0≤x≤1時,f(x)=x2,當(dāng)x>0時,f(x+1)=f(x)+f(1),若直線y=kx與函數(shù)y=f(x)的圖象恰有7個不同的公共點(diǎn),則實(shí)數(shù)k的取值范圍為(2$\sqrt{2}$-1,2$\sqrt{6}$-4).

分析 本題通過奇函數(shù)特征得到函數(shù)圖象經(jīng)過原點(diǎn),且關(guān)于原點(diǎn)對稱,利用f(x+1)=f(x)+f(1)得到函數(shù)類似周期性特征,從而可以畫出函數(shù)的草圖,再利用兩個臨界狀態(tài)的研究,得到k的取值范圍

解答 解:∵當(dāng)0≤x≤1時,f(x)=x2,
∴f(1)=1.
∵當(dāng)x>0時,f(x+1)=f(x)+f(1),
∴f(x+1)=f(x)+1,
∴當(dāng)x∈[n,n+1],n∈N*時,
f(x+1)=f(x-1)+2=f(x-2)+3=…=f(x-n)+n+1=(x-n)2+n,
∵函數(shù)f(x)是定義在R上的奇函數(shù),
∴函數(shù)圖象經(jīng)過原點(diǎn),且關(guān)于原點(diǎn)對稱.
∵直線y=kx與函數(shù)y=f(x)的圖象恰有7個不同的公共點(diǎn),
∴當(dāng)x>0時,直線y=kx與函數(shù)y=f(x)的圖象恰有3個不同的公共點(diǎn),
∴由x>0時f(x)的圖象可知:
直線y=kx與函數(shù)y=f(x)的圖象相切位置在x∈[1,2]時,直線y=kx與函數(shù)y=f(x)的圖象恰有5個不同的公共點(diǎn),
直線y=kx與函數(shù)y=f(x)的圖象相切位置在x∈[2,3]時,直線y=kx與函數(shù)y=f(x)的圖象恰有9個不同的公共點(diǎn),
∴直線y=kx與函數(shù)y=f(x)的圖象位置情況介于上述兩種情況之間.
∵當(dāng)x∈[1,2]時,
由$\left\{\begin{array}{l}{y=kx}\\{y=(x-1)^{2}+1}\end{array}\right.$得:k=2$\sqrt{2}$-2
x2-(k+2)x+2=0,
令△=0,得:k=2$\sqrt{2}$-2.
由$\left\{\begin{array}{l}{y=kx}\\{y=(x-2)^{2}+2}\end{array}\right.$得:
x2-(k+4)x+6=0,
令△=0,得:k=2$\sqrt{6}$-4.
∴k的取值范圍為(2$\sqrt{2}$-1,2$\sqrt{6}$-4).
故答案為:(2$\sqrt{2}$-2,2$\sqrt{6}$-4).

點(diǎn)評 本題考查抽象函數(shù)及其應(yīng)用,著重考查函數(shù)的零點(diǎn)與方程根的關(guān)系,考查函數(shù)的對稱性、周期性、奇偶性的綜合應(yīng)用,考查轉(zhuǎn)化思想與作圖能力,屬于難題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.在自變量的同一變化過程中,下列命題中正確的是(  )
A.若$\underset{lim}{x→{x}_{0}}$f(x)和$\underset{lim}{x→{x}_{0}}$g(x)都不存在,則$\underset{lim}{x→{x}_{0}}$[f(x)+g(x)]不存在
B.若$\underset{lim}{x→{x}_{0}}$f(x)和$\underset{lim}{x→{x}_{0}}$g(x)都不存在,則$\underset{lim}{x→{x}_{0}}$[f(x)g(x)]不存在
C.$\underset{lim}{x→{x}_{0}}$$\frac{f(x)}{g(x)}$存在,且$\underset{lim}{x→{x}_{0}}$[g(x)]=0,則$\underset{lim}{x→{x}_{0}}$f(x)=0
D.若$\underset{lim}{x→{x}_{0}}$|f(x)|=|A|,$\underset{lim}{x→{x}_{0}}$f(x)=A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.函數(shù)y=secx?sinx的最小正周期T=π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{2}$=1的焦點(diǎn)在x軸上,以橢圓右頂點(diǎn)為焦點(diǎn)的拋物線標(biāo)準(zhǔn)方程為y2=16x.
(1)求橢圓C的離心率
(2)若動直線l的斜率為$-\frac{{\sqrt{2}}}{2}$,且與橢圓C交于不同的兩點(diǎn)M、N,已知點(diǎn)Q$(-\sqrt{2},0)$,求$\overrightarrow{QM}•\overrightarrow{QN}$的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.函數(shù)f(x)對任意x∈R都有f(x)+f(1-x)=$\frac{1}{2}$.
(1)數(shù)列{an}滿足:an=f(0)+f($\frac{1}{n}$)+f($\frac{2}{n}$)+…+f($\frac{n-1}{n}$)+f(1),求an;
(2)令bn=$\frac{4}{4{a}_{n}-1}$,Tn=b${\;}_{1}^{2}$+b${\;}_{2}^{2}$+b${\;}_{3}^{2}$+…+b${\;}_{n}^{2}$,Sn=32-$\frac{16}{n}$,試比較Tn和Sn的大小;
(3)在(1)的條件下,設(shè)bn=4an-1,cn=bnqn-1(q≠0,n∈N*),求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.一個五面體的三視圖如圖,正視圖是等腰直角三角形,側(cè)視圖是直角三角形,部分邊長如圖所示,則此五面體的體積為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)a=log26,b=log412,c=log618,則(  )
A.b>c>aB.a>c>bC.a>b>cD.c>b>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.某單位抽獎活動的規(guī)則是:代表通過操作按鍵使電腦自動產(chǎn)生兩個[0,1]之間的均勻隨機(jī)數(shù)x,y,并按如圖所示的程序框圖執(zhí)行.若電腦顯示“中獎”,則該代表中獎;若電腦顯示“謝謝”,則不中獎,則該代表中獎的概率為(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{3}{4}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知f(x)=$\left\{\begin{array}{l}{{x}^{2},x≥0}\\{-{x}^{2},x<0}\end{array}\right.$,若對任意的x≥1有f(x+2m)+mf(x)>0恒成立,則實(shí)數(shù)m的取值范圍是m>-$\frac{1}{4}$.

查看答案和解析>>

同步練習(xí)冊答案