如圖,已知正方體
棱長(zhǎng)為2,
、
、
分別是
、
和
的中點(diǎn).![]()
(1)證明:
面
;
(2)求二面角
的余弦值.
(1)證明詳見(jiàn)解析;(2)
.
解析試題分析:先以點(diǎn)
為原點(diǎn)建立空間直角坐標(biāo)系,然后標(biāo)明有效點(diǎn)的坐標(biāo),(1)寫出有效向量
的坐標(biāo),利用向量的數(shù)量積為零即可證明
,從而可得
平面
;(2)易知
為平面
的法向量,先計(jì)算
,然后觀察二面角
是銳角還是鈍角,最終確定二面角
的余弦值.
試題解析:以
為原點(diǎn)建立如圖空間直角坐標(biāo)系,正方體棱長(zhǎng)為2![]()
則
2分
(1)則
,![]()
3分
∵![]()
![]()
∴
4分
∵![]()
![]()
∴
5分
又
,
,
6分
∴
面
7分
(2)由(1)知
為面
的法向量 8分
∵
面
,
為面
的法向量 9分
設(shè)
與
夾角為
,則![]()
![]()
12分
由圖可知二面角
的平面角為![]()
∴二面角
的余弦值為
14分.
考點(diǎn):1.空間向量在解決空間垂直上的應(yīng)用;2.空間向量在解決空間角中的應(yīng)用.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知四棱錐P-ABCD中,底面ABCD為正方形,PD⊥平面ABCD,EC∥PD,且PD=2EC.![]()
(1)求證:BE∥平面PDA;
(2)若N為線段PB的中點(diǎn),求證:NE⊥平面PDB.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,正方形ABCD和三角形ACE所在的平面互相垂直,EF∥BD,AB=
EF.![]()
(1)求證:BF∥平面ACE;
(2)求證:BF⊥BD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,AB是圓O的直徑,PA垂直圓O所在的平面,C是圓O上的點(diǎn).![]()
(1)求證:BC⊥平面PAC;
(2)設(shè)Q為PA的中點(diǎn),G為△AOC的重心,求證:QG∥平面PBC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在四棱錐P ABCD中,側(cè)面PAD⊥底面ABCD,側(cè)棱
,
,底面
為直角梯形,其中BC∥AD, AB⊥AD,
,O為AD中點(diǎn).![]()
(1)求直線
與平面
所成角的余弦值;
(2)求
點(diǎn)到平面
的距離;
(3)線段
上是否存在一點(diǎn)
,使得二面角
的余弦值為
?若存在,求出
的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
四邊形
與
都是邊長(zhǎng)為
的正方形,點(diǎn)E是
的中點(diǎn),
平面![]()
![]()
(1)求證:
平面
;
(2)求證:平面
平面
;
(3)求三棱錐A—BDE的體積
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在矩形
中,點(diǎn)
為邊
上的點(diǎn),點(diǎn)
為邊
的中點(diǎn),
,現(xiàn)將
沿
邊折至
位置,且平面
平面
.![]()
(1) 求證:平面
平面
;
(2) 求二面角
的大小.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com