欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦點分別為F1,F(xiàn)2,點A在橢圓C上,
AF1
F1F2
=0
,cosF1AF2=
3
5
,|
F1F2
|=2
,過點F2且與坐標軸不垂直的直線交橢圓于P,Q兩點.
(I)求橢圓C的方程;
(II)線段OF2上是否存在點M(m,0),使得
QP
MP
=
PQ
MQ
,若存在,求出實數(shù)m的取值范圍;若不存在,說明理由.
(Ⅰ)由題意∠AF1F2=90°,cosF1AF2=
3
5
,
|
F1F2
|=2

所以|
AF1
|=
3
2
,|
AF2
|=
5
2
,2a=|
AF1
|+|
AF2
|
=4,
所以a=2,c=1,b2=a2-c2=3,即所求橢圓方程為
x2
4
+
y2
3
=1

(Ⅱ)存在這樣的點M符合題意.
設(shè)線段PQ的中點為N,P(x1,y1),Q(x2,y2),N(x0,y0),直線PQ的斜率為k(k≠0),
又F2(1,0),則直線PQ的方程為y=k(x-1),
x2
4
+
y2
3
=1
y=k(x-1)
消y得(4k2+3)x2-8k2x+4k2-12=0,
由韋達定理得x1+x2=
8k2
4k2+3
,故x0=
x1+x2
2
=
4k2
4k2+3
,
又點N在直線PQ上,所以N(
4k2
4k2+3
,
-3k
4k2+3
)

QP
MP
=
PQ
MQ
,可得
PQ
•(
MQ
+
MP
)=2
PQ
MN
=0,即PQ⊥MN,
所以kMN=
0+
3k
4k2+3
m-
4k2
4k2+3
=-
1
k
,整理得m=
k2
4k2+3
=
1
4+
3
k2
∈(0,
1
4
)
,
所以在線段OF2上存在點M(m,0)符合題意,其中m∈(0,
1
4
)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的左右焦點分別為F1,F(xiàn)2,左頂點為A,若|F1F2|=2,橢圓的離心率為e=
1
2

(Ⅰ)求橢圓的標準方程,
(Ⅱ)若P是橢圓上的任意一點,求
PF1
PA
的取值范圍
(III)直線l:y=kx+m與橢圓相交于不同的兩點M,N(均不是長軸的頂點),AH⊥MN垂足為H且
AH
2
=
MH
HN
,求證:直線l恒過定點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的左焦點F(-c,0)是長軸的一個四等分點,點A、B分別為橢圓的左、右頂點,過點F且不與y軸垂直的直線l交橢圓于C、D兩點,記直線AD、BC的斜率分別為k1,k2
(1)當(dāng)點D到兩焦點的距離之和為4,直線l⊥x軸時,求k1:k2的值;
(2)求k1:k2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的離心率是
3
2
,且經(jīng)過點M(2,1),直線y=
1
2
x+m(m<0)
與橢圓相交于A,B兩點.
(1)求橢圓的方程;
(2)當(dāng)m=-1時,求△MAB的面積;
(3)求△MAB的內(nèi)心的橫坐標.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•威海二模)已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為e=
6
3
,過右焦點做垂直于x軸的直線與橢圓相交于兩點,且兩交點與橢圓的左焦點及右頂點構(gòu)成的四邊形面積為
2
6
3
+2

(Ⅰ)求橢圓的標準方程;
(Ⅱ)設(shè)點M(0,2),直線l:y=1,過M任作一條不與y軸重合的直線與橢圓相交于A、B兩點,若N為AB的中點,D為N在直線l上的射影,AB的中垂線與y軸交于點P.求證:
ND
MP
AB
2
為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的右焦點為F,過F作y軸的平行線交橢圓于M、N兩點,若|MN|=3,且橢圓離心率是方程2x2-5x+2=0的根,求橢圓方程.

查看答案和解析>>

同步練習(xí)冊答案