分析 根據(jù)題意,得出f(0)=0,從而求得m與n的關(guān)系,求出f(x)的解析式,再討論n的值,求出n的取值范圍,從而求得m+n的取值范圍.
解答 解:根據(jù)題意,設(shè)x1∈{x|f(x)=0}={x|f(f(x))=0},
∴f(x1)=f(f(x1))=0,
∴f(0)=0,
即f(0)=m-$\frac{n}{3}$=0,
解得m=$\frac{n}{3}$;
故f(x)=x2+2nx,
f(f(x))=(x2+2nx)(x2+2nx+2n)=0,
當(dāng)n=0時(shí),滿足題意;
當(dāng)n≠0時(shí),0,-2n不是x2+2nx+2n=0的根,
∴△=4n2-8n<0,
解得0<n<2;
∴m+n=$\frac{4n}{3}$,
則0≤n+m<$\frac{8}{3}$;
∴m+n的取值范圍是[0,$\frac{8}{3}$).
故答案為:[0,$\frac{8}{3}$).
點(diǎn)評(píng) 本題考查了函數(shù)與集合的關(guān)系應(yīng)用及分類討論的思想應(yīng)用,同時(shí)考查了方程的根的判斷,屬于中檔題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\frac{π}{6}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{3}$ | D. | $\frac{5π}{12}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | “π是函數(shù)y=sinx的一個(gè)周期”或“2π是函數(shù)y=cosx的一個(gè)周期” | |
| B. | “m>0”是“函數(shù)f(x)=m+log2x(x≥1)不存在零點(diǎn)”的充分不必要條件 | |
| C. | “若a≤b,則2a≤2b-1”的否命題 | |
| D. | “任意a∈(0,+∞),函數(shù)y=ax在定義域內(nèi)單調(diào)遞增”的否定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $(-\frac{1}{2},+∞)$ | B. | $(\frac{1}{2},+∞)$ | C. | $(-∞,-\frac{1}{2})$ | D. | $(-∞,\frac{1}{2})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | p∧q是真命題 | B. | p∧(﹁q)是真命題 | C. | ﹁p∧q是真命題 | D. | ﹁p∧﹁q是假命題 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com