如圖,
是
的一條切線,切點(diǎn)為
,
都是
的割線,已知
.
![]()
(1)證明:
;
(2)證明:
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2011屆浙江省嘉興一中高三高考模擬試題文數(shù) 題型:解答題
(本題滿(mǎn)分15分)如圖,已知直線
與拋物線
和圓
都相切,
是
的焦點(diǎn).
(1)求
與
的值;(2)設(shè)
是
上的一動(dòng)點(diǎn),以
為切點(diǎn)作拋物線
的切線
,直線
交
軸于點(diǎn)
,以
為鄰邊作平行四邊形
,證明:點(diǎn)
在一條定直線上;
(3)在(2)的條件下,記點(diǎn)
所在的定直線為
,直線
與
軸交點(diǎn)為
,連接
交拋物線
于
兩點(diǎn),求
的面積
的取值范圍.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年浙江省高三高考模擬試題理數(shù) 題型:解答題
(本題滿(mǎn)分15分)如圖,已知直線
與拋物線
和圓
都相切,
是
的焦點(diǎn).
(1)求
與
的值;
(2)設(shè)
是
上的一動(dòng)點(diǎn),以
為切點(diǎn)作拋物線
的切線
,直線
交
軸于點(diǎn)
,以
為鄰邊作平行四邊形
,證明:點(diǎn)
在一條定直線上;
(3)在(2)的條件下,記點(diǎn)
所在的定直線為
,直線
與
軸交點(diǎn)為
,連接
交拋物線
于
兩點(diǎn),求
的面積
的取值范圍.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本題滿(mǎn)分15分)如圖,已知直線
(
)與拋物線
:
和圓
:
都相切,
是
的焦點(diǎn).
(Ⅰ)求
與
的值;
(Ⅱ)設(shè)
是
上的一動(dòng)點(diǎn),以
為切點(diǎn)作拋物線![]()
的切線
,直線
交
軸于點(diǎn)
,以
、
為
鄰邊作平行四邊形
,證明:點(diǎn)
在一條
定直線上;
(Ⅲ)在(Ⅱ)的條件下,記點(diǎn)
所在的定直線為
,
直線
與
軸交點(diǎn)為
,連接
交拋物線![]()
于
、
兩點(diǎn),求△
的面積
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本題滿(mǎn)分15分)如圖,已知直線
(
)與拋物線
:
和圓
:
都相切,
是
的焦點(diǎn).
(Ⅰ)求
與
的值;
(Ⅱ)設(shè)
是
上的一動(dòng)點(diǎn),以
為切點(diǎn)作拋物線![]()
的切線
,直線
交
軸于點(diǎn)
,以
、
為
鄰邊作平行四邊形
,證明:點(diǎn)
在一條
定直線上;
(Ⅲ)在(Ⅱ)的條件下,記點(diǎn)
所在的定直線為
,
直線
與
軸交點(diǎn)為
,連接
交拋物線![]()
于
、
兩點(diǎn),求△
的面積
的取值范圍.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com