(本題滿(mǎn)分12分)如圖,四棱錐P-ABCD中,PA⊥底面ABCD,AB⊥AD,點(diǎn)E在線(xiàn)段AD上,CE∥AB。
(Ⅰ)求證:CE⊥平面PAD;
(Ⅱ)若PA=AB=1,AD=3,且CD與平面PAD所成的角為45°,求二面角B—PE—A的正切值。
![]()
![]()
DE=CE=AB=1,AE=2, (6分)連PE,BE
法一:以A為原點(diǎn)O,AD為OX軸,AB為OY軸,AP為OZ軸建立空間直角坐標(biāo)系
A(0,0,0),B(0,1,0)E(2,0,0)
由(I)知AB為平面PAE的法向量且
設(shè)平面PBE的法向量為![]()
由![]()
得
解之,得
取
(8分)
設(shè)所求二面角的平面角為
,則
(12分)
法二:作
于H,連BH,由(I)知
平面AHB
為所求二面角的平面角 (10分)
在
中,
由,得
(12分)
【解析】略
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2014屆江西高安中學(xué)高二上期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
(本題滿(mǎn)分12分)
如圖所示的幾何體是由以正三角形
為底面的直棱柱被平面
所截而得.
,
為
的中點(diǎn).
![]()
(1)當(dāng)
時(shí),求平面
與平面
的夾角的余弦值;
(2)當(dāng)
為何值時(shí),在棱
上存在點(diǎn)
,使
平面
?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年湖北省八市高三3月聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿(mǎn)分12分)如圖,在長(zhǎng)方體
中,已知上下兩底面為正方形,且邊長(zhǎng)均為1;側(cè)棱
,為
中點(diǎn),
為
中點(diǎn),
為
上一個(gè)動(dòng)點(diǎn).
![]()
(Ⅰ)確定
點(diǎn)的位置,使得
;
(Ⅱ)當(dāng)
時(shí),求二面角
的平
面角余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年廣西桂林中學(xué)高三7月月考試題理科數(shù)學(xué) 題型:解答題
(本題滿(mǎn)分12分)如圖,在四棱錐P—ABCD中,底面ABCD為正方形,PD⊥平面ABCD,且PD=AB=2,E是PB的中點(diǎn),F(xiàn)是AD的中點(diǎn).
![]()
⑴求異面直線(xiàn)PD與AE所成角的大。
⑵求證:EF⊥平面PBC ;
⑶求二面角F—PC—B的大小..
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011年湖南省招生統(tǒng)一考試文科數(shù)學(xué) 題型:解答題
(本題滿(mǎn)分12分)
如圖3,在圓錐
中,已知
的直徑
的中點(diǎn).
(I)證明:![]()
(II)求直線(xiàn)和平面
所成角的正弦值.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010年海南省高三五校聯(lián)考數(shù)學(xué)(文) 題型:解答題
(本題滿(mǎn)分12分)
如圖,三棱錐S—ABC中,AB⊥BC,D、E分別為AC、BC的中點(diǎn),SA=SB=SC。
(1)求證:BC⊥平面SDE;
(2)若AB=BC=2,SB=4,求三棱錐S—ABC的體積。
![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com