【題目】已知集合A={x|3≤3x≤27},
.
(1)分別求A∩B,(RB)∪A;
(2)已知集合C={x|1<x<a},若CA,求實數(shù)a的取值集合.
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線
的頂點在原點,焦點在
軸上,且拋物線上有一點
到焦點的距離為5.
(1)求該拋物線
的方程;
(2)已知拋物線上一點
,過點
作拋物線的兩條弦
和
,且
,判斷直線
是否過定點?并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一位網(wǎng)民在網(wǎng)上光顧某網(wǎng)店,經(jīng)過一番瀏覽后,對該店鋪中的A,B,C三種商品有購買意向.已知該網(wǎng)民購買A種商品的概率為
,購買B種商品的槪率為
,購買C種商品的概率為
.假設該網(wǎng)民是否購買這三種商品相互獨立
(1)求該網(wǎng)民至少購買2種商品的概率;
(2)用隨機變量η表示該網(wǎng)民購買商品的種數(shù),求η的槪率分布和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】劉徽(約公元 225 年—295 年)是魏晉時期偉大的數(shù)學家,中國古典數(shù)學理論的奠基人之一,他的杰作《九章算術注》和《海島算經(jīng)》是中國寶貴的古代數(shù)學遺產. 《九章算術·商功》中有這樣一段話:“斜解立方,得兩壍堵. 斜解壍堵,其一為陽馬,一為鱉臑.” 劉徽注:“此術臑者,背節(jié)也,或曰半陽馬,其形有似鱉肘,故以名云.” 其實這里所謂的“鱉臑(biē nào)”,就是在對長方體進行分割時所產生的四個面都為直角三角形的三棱錐. 如圖,在三棱錐
中,
垂直于平面
,
垂直于
,且
,則三棱錐
的外接球的球面面積為__________.
![]()
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
的圖象過點(﹣1,2),且在點(﹣1,f(﹣1))處的切線與直線x﹣5y+1=0垂直.
(1)求實數(shù)b,c的值;
(2)求f(x)在[﹣1,e](e為自然對數(shù)的底數(shù))上的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若
是公差不為0的等差數(shù)列
的前
項和,且
成等比數(shù)列,
.
(1)求數(shù)列
的通項公式;
(2)設
是數(shù)列
的前
項和,求使得
對所有
都成立的最小正整數(shù)
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知a>0,a≠1且loga3>loga2,若函數(shù)f(x)=logax在區(qū)間[a,2a]上的最大值與最小值之差為1.
(1)求a的值;
(2)解不等式
;
(3)求函數(shù)g(x)=|logax﹣1|的單調區(qū)間.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設
,曲線y=f(x)在點(1,f(1))處的切線與直線2x+y+1=0垂直.
(1)求a的值;
(2)若x∈[1,+∞),f(x)≤m(x﹣1)恒成立,求m的范圍.
(3)求證:
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)f(x)的定義域為R,f(x)=
,且對任意的x∈R都有f(x+1)=﹣
,若在區(qū)間[﹣5,1]上函數(shù)g(x)=f(x)﹣mx+m恰有5個不同零點,則實數(shù)m的取值范圍是( )
A.[﹣
,﹣
)
B.(﹣
,﹣
]
C.(﹣
,0]
D.(﹣
,﹣
]
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com