欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

7.已知a>0且a≠1,函數(shù)f(x)=$\left\{\begin{array}{l}sin(\frac{π}{2}x)-1,\;x<0\\{log_a}x,\;\;x>0\end{array}$.若f(x)的圖象上關(guān)于y軸對(duì)稱的點(diǎn)至少有3對(duì),則實(shí)數(shù)a的取值范圍是(0,$\frac{\sqrt{5}}{5}$).

分析 求出函數(shù)f(x)=sin($\frac{π}{2}$x)-1,(x<0)關(guān)于y軸對(duì)稱的解析式,利用數(shù)形結(jié)合即可得到結(jié)論.

解答 解:若x>0,則-x<0,
∵x<0時(shí),f(x)=sin($\frac{π}{2}$x)-1,
∴f(-x)=sin(-$\frac{π}{2}$x)-1=-sin($\frac{π}{2}$x)-1,
則若f(x)=sin($\frac{π}{2}$x)-1,(x<0)關(guān)于y軸對(duì)稱,
則f(-x)=-sin($\frac{π}{2}$x)-1=f(x),
即y=-sin($\frac{π}{2}$x)-1,x>0,
設(shè)g(x)=-sin($\frac{π}{2}$x)-1,x>0
作出函數(shù)g(x)的圖象,
要使y=-sin($\frac{π}{2}$x)-1,x>0與f(x)=logax,x>0的圖象至少有3個(gè)交點(diǎn),
則0<a<1且滿足g(5)<f(5),
即-2<loga5,
即loga5>logaa-2,
則5<$\frac{1}{{a}^{2}}$,
解得0<a<$\frac{\sqrt{5}}{5}$,
故答案為:(0,$\frac{\sqrt{5}}{5}$).

點(diǎn)評(píng) 本題主要考查分段函數(shù)的應(yīng)用,作出函數(shù)關(guān)于y軸對(duì)稱的圖象,利用數(shù)形結(jié)合的思想是解決本題的關(guān)鍵.綜合性較強(qiáng),有一定的難度.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知向量$\overrightarrow a=(1,3)$,其起點(diǎn)坐標(biāo)為(-1,5),則它的終點(diǎn)的坐標(biāo)為(0,8).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.設(shè){an}(n∈N*)是等差數(shù)列,且a5=10,a10=20.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)Sn為數(shù)列{an}的前n項(xiàng)和,求數(shù)列$\{\frac{1}{S_n}\}$的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別是a,b,c,若tanA=$\frac{sinC}{1-cosC}$;
(1)求$\frac{a}$;
(2)若△ABC的面積為$\frac{\sqrt{3}}{6}$,c=$\sqrt{2}$,求角C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.計(jì)算:
(1)($\frac{8}{27}$)${\;}^{\frac{2}{3}}$+($\frac{3}{2}$)${\;}^{-\frac{1}{3}}$×(-$\frac{3}{5}$)0-$\sqrt{(\frac{2}{3})^{\frac{2}{3}}}$-$\frac{4}{9}$
(2)lg25-lg22+2lg2+3${\;}^{lo{g}_{3}2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.定義在R上的偶函數(shù)f(x)滿足f(x+4)=f(x),當(dāng)x∈[0,2],f(x)=3x,則f(-9)=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知正方體ABCD-A1B1C1D1
(1)求證:D1C∥平面A1BD.
(2)求異面直線A1D與D1C所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知函數(shù)f(x)=$\left\{\begin{array}{l}{-x-1(x<-2)}\\{x+3(-2≤x≤\frac{1}{2})}\\{5x+1(x>\frac{1}{2})}\end{array}\right.$
(1)畫出函數(shù)的圖象并由圖象觀察函數(shù)f(x)的最小值;
(2)已知m∈R,命題p:關(guān)于x的不等式f(x)≥m2+2m-2對(duì)任意x∈R恒成立;q:函數(shù)y=(m2-1)x是增函數(shù).若“p或q”為真,“p且q”為假,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.函數(shù)$f(x)={(\frac{1}{3})^{\sqrt{1-{x^2}}}}$的單調(diào)增區(qū)間是[0,1],值域?yàn)?[{\frac{1}{3},1}]$.

查看答案和解析>>

同步練習(xí)冊(cè)答案