分析 令-x2+2$\sqrt{3}$x+1=0的兩個根為x1,x2,則二次函數(shù)y=-x2+2$\sqrt{3}$x+1的圖象與x軸兩交點(diǎn)之間的距離為|x1-x2|,進(jìn)而根據(jù)韋達(dá)定理的推論2,得到答案.
解答 解:令-x2+2$\sqrt{3}$x+1=0的兩個根為x1,x2,
則|x1-x2|=$\frac{\sqrt{△}}{\left|a\right|}$=$\sqrt{12+4}$=4,
∴二次函數(shù)y=-x2+2$\sqrt{3}$x+1的圖象與x軸兩交點(diǎn)之間的距離為4,
故答案為:4
點(diǎn)評 本題考查的知識點(diǎn)是二次函數(shù)的圖象和性質(zhì),熟練掌握二次函數(shù)的圖象和性質(zhì)是解答的關(guān)鍵.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 充分非必要條件 | B. | 必要非充分條件 | ||
| C. | 充要條件 | D. | 即不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com