【題目】已知函數(shù)
為偶函數(shù).
(Ⅰ)求
的最小值;
(Ⅱ)若不等式
恒成立,求實數(shù)
的最小值.
【答案】(1) 當(dāng)
時,
取得最小值2;(2) 實數(shù)
的最小值為
.
【解析】試題分析:(Ⅰ)由
可得(
)(
=0在R上恒成立,解得
。然后根據(jù)單調(diào)性的定義可證明函數(shù)
在
上為增函數(shù),且為偶函數(shù),從而可得
在
上是減函數(shù)。所以當(dāng)
時,
取得最小值2。(Ⅱ)由題意
,故可得
恒成立,令
,結(jié)合
可得到
取得最大值0,因此
,實數(shù)
的最小值為
.
試題解析:
(Ⅰ) 由題意得
,
即
在R上恒成立,
整理得(
)(
=0在R上恒成立,
解得
,
∴
.
設(shè)
,
則
,
∵
,
∴
,
∴
,
∴
,
∴
在
上是增函數(shù).
又
為偶函數(shù),
∴
在
上是減函數(shù).
∴當(dāng)
時,
取得最小值2.
(Ⅱ)由條件知
.
∵
恒成立,
∴
恒成立.
令![]()
由(Ⅰ)知
,
∴
時,
取得最大值0,
∴
,
∴實數(shù)
的最小值為
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點P(2,0)及圓C:x2+y2﹣6x+4y+4=0.
(1)設(shè)過P直線l1與圓C交于M、N兩點,當(dāng)|MN|=4時,求以MN為直徑的圓Q的方程;
(2)設(shè)直線ax﹣y+1=0與圓C交于A,B兩點,是否存在實數(shù)a,使得過點P(2,0)的直線l2垂直平分弦AB?若存在,求出實數(shù)a的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合M={(x,y)|y=f(x)},若對于任意(x1 , y1)∈M,存在(x2 , y2)∈M,使得x1x2+y1y2=0成立,則稱集合M是“垂直對點集”.給出下列四個集合:
①M={
};
②M={(x,y)|y=sinx+1};
③M={(x,y)|y=log2x};
④M={(x,y)|y=ex﹣2}.
其中是“垂直對點集”的序號是( )
A.①②
B.②③
C.①④
D.②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐
中,平面
平面
,且
,
.四邊形
滿足
,
,
.
為側(cè)棱
的中點,
為側(cè)棱
上的任意一點.
![]()
(1)若
為
的中點,求證: 面
平面
;
(2)是否存在點
,使得直線
與平面
垂直? 若存在,寫出證明過程并求出線段
的長;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列
是以2為首項的等差數(shù)列,且
成等比數(shù)列.
(Ⅰ)求數(shù)列
的通項公式及前
項和
;
(Ⅱ)若
,求數(shù)列
的前
項之和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以下四個關(guān)于圓錐曲線的命題中:
①雙曲線
與橢圓
有相同的焦點;
②以拋物線的焦點弦(過焦點的直線截拋物線所得的線段)為直徑的圓與拋物線的準(zhǔn)線是相切的;
③設(shè)A,B為兩個定點,k為常數(shù),若|PA|﹣|PB|=k,則動點P的軌跡為雙曲線;
④過定圓C上一點A作圓的動弦AB,O為原點,若
則動點P的軌跡為橢圓.其中正確的個數(shù)是( )
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓心C(1,2),且經(jīng)過點(0,1) (Ⅰ)寫出圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)過點P(2,﹣1)作圓C的切線,求切線的方程及切線的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)y=f(x)的定義域為D,若對于任意的x1 , x2∈D,當(dāng)x1+x2=2a時,恒有f(x1)+f(x2)=2b,則稱點(a,b)為函數(shù)y=f(x)圖象的對稱中心.研究函數(shù)f(x)=x3+sinx+2的某一個對稱中心,并利用對稱中心的上述定義,可得到
…
= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線
的參數(shù)方程為
(
為參數(shù)),在同一平面直角坐標(biāo)系中,將曲線
上的點按坐標(biāo)變換
得到曲線
.(1)求曲線
的普通方程;(2)若點
在曲線
上,點
,當(dāng)點
在曲線
上運動時,求
中點
的軌跡方程.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com