分析 (Ⅰ)設(shè)出數(shù)列{an}的公比和數(shù)列{bn}的公差,由題意列出關(guān)于q,d的方程組,求解方程組得到q,d的值,則等差數(shù)列和等比數(shù)列的通項(xiàng)公式可求;
(Ⅱ)由題意得到${c}_{n}=(2n-1)•{2}^{n-1}$,然后利用錯(cuò)位相減法求得數(shù)列{cn}的前n項(xiàng)和.
解答 解:(Ⅰ)設(shè)數(shù)列{an}的公比為q,數(shù)列{bn}的公差為d,由題意,q>0,
由已知有$\left\{\begin{array}{l}{2{q}^{2}-3d=2}\\{{q}^{4}-3d=10}\end{array}\right.$,消去d整理得:q4-2q2-8=0.
∵q>0,解得q=2,∴d=2,
∴數(shù)列{an}的通項(xiàng)公式為${a}_{n}={2}^{n-1}$,n∈N*;
數(shù)列{bn}的通項(xiàng)公式為bn=2n-1,n∈N*.
(Ⅱ)由(Ⅰ)有${c}_{n}=(2n-1)•{2}^{n-1}$,
設(shè){cn}的前n項(xiàng)和為Sn,則
${S}_{n}=1×{2}^{0}+3×{2}^{1}+5×{2}^{2}+…+(2n-3)×{2}^{n-2}+(2n-1)×{2}^{n-1}$,
$2{S}_{n}=1×{2}^{1}+3×{2}^{2}+5×{2}^{3}+…+(2n-3)×{2}^{n-1}+(2n-1)×{2}^{n}$,
兩式作差得:$-{S}_{n}=1+{2}^{2}+{2}^{3}+…+{2}^{n}-(2n-1)×{2}^{n}$=2n+1-3-(2n-1)×2n=-(2n-3)×2n-3.
∴${S}_{n}=(2n-3)•{2}^{n}+3,n∈{N}^{*}$.
點(diǎn)評(píng) 本題主要考查等差數(shù)列、等比數(shù)列及其前n項(xiàng)和,考查數(shù)列求和的基本方法和運(yùn)算求解能力,是中檔題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | {0} | B. | {1} | C. | {0,1,2} | D. | {0,1} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 若l⊥β,則α⊥β | B. | 若α⊥β,則l⊥m | C. | 若l∥β,則α∥β | D. | 若α∥β,則l∥m |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{1}{3}$ | B. | $\frac{1}{2}$ | C. | $\frac{\sqrt{3}}{3}$ | D. | $\frac{\sqrt{2}}{2}$ |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com