分析 根據(jù)所給的式子即(7-1)n-1,按照二項式定理展開,可得它除以7的余數(shù).
解答 解:根據(jù)1+5Cn1+52Cn2+53Cn3+…+5nCnn -1=(1+5)n-1=(7-1)n-1=${C}_{n}^{0}$•7n-${C}_{n}^{1}$•7n-1+${C}_{n}^{2}$•7n-2+…+${C}_{n}^{n-1}$•7(-1)n-1+${C}_{n}^{n}$•(-1)n-1,
故除了最后2項外,其余的各項均能被7整除,
故它除以7的余數(shù)即為1+(-1)n除以7的余數(shù),即為0或5,
故答案為:0或5.
點評 本題主要考查二項式定理的應用,二項式系數(shù)的性質(zhì),二項式展開式的通項公式,屬于基礎(chǔ)題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | 1 | B. | 2 | C. | $\frac{3}{2}$ | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | 1 | B. | $\sqrt{2}$ | C. | $\sqrt{3}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | 由圓x2+y2=r2的面積S=πr2,推斷:橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的面積S=πab; | |
| B. | 由平面三角形的性質(zhì)推測空間四面體的性質(zhì); | |
| C. | 由a1=1,an=3n-2,求出S1,S2,S3,猜出數(shù)列{an}的前n項和的表達式; | |
| D. | 由于f(x)=xcosx滿足f(-x)=-f(x)對?x∈R都成立,推斷f(x)=xcosx為奇函數(shù). |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | [3,+∞) | B. | [6,+∞) | C. | (-∞,9] | D. | (-∞,12] |
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com