【題目】給定兩個(gè)命題p:函數(shù)y=x2+8ax+1在[﹣1,1]上單調(diào)遞增;q:方程
=1表示雙曲線,如果命題“p∧q”為假命題,“p∨q”為真命題,求實(shí)數(shù)a的取值范圍.
【答案】解:對(duì)于命題p:函數(shù)y=x2+8ax+1的對(duì)稱(chēng)軸為x=﹣4a 由函數(shù)y=x2+8ax+1在[﹣1,1]上單調(diào)遞增得﹣4a≤﹣1,解得
,
對(duì)于命題q:由方程
表示雙曲線得(a+2)(a﹣1)<0,解得﹣2<a<1,
命題“p∧q”為假命題,“p∨q”為真命題,有兩種情況:
①當(dāng)p真q假時(shí),
,且a≥1,或a≤﹣2,解得a≥1
②當(dāng)p假q真時(shí),
,且﹣2<a<1,解得﹣2<a< ![]()
綜上可得,實(shí)數(shù)a的取值范圍為﹣2<a<
或a≥1
【解析】先求出命題p、q為真時(shí)a的范圍,由命題“p∧q”為假命題,“p∨q”為真命題得p真q假,p假q真列式計(jì)算即可.
【考點(diǎn)精析】通過(guò)靈活運(yùn)用命題的真假判斷與應(yīng)用,掌握兩個(gè)命題互為逆否命題,它們有相同的真假性;兩個(gè)命題為互逆命題或互否命題,它們的真假性沒(méi)有關(guān)系即可以解答此題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知ω>0,0<φ<π,直線x=
和x=
是函數(shù)f(x)=sin(ωx+φ)圖象的兩條相鄰的對(duì)稱(chēng)軸,則
(1)求f(x)的解析式;
(2)設(shè)h(x)=f(x)+
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2017年3月14日,“ofo共享單車(chē)”終于來(lái)到蕪湖,ofo共享單車(chē)又被親切稱(chēng)作“小黃車(chē)”是全球第一個(gè)無(wú)樁共享單車(chē)平臺(tái),開(kāi)創(chuàng)了首個(gè)“單車(chē)共享”模式.相關(guān)部門(mén)準(zhǔn)備對(duì)該項(xiàng)目進(jìn)行考核,考核的硬性指標(biāo)是:市民對(duì)該項(xiàng)目的滿意指數(shù)不低于0.8,否則該項(xiàng)目需進(jìn)行整改,該部門(mén)為了了解市民對(duì)該項(xiàng)目的滿意程度,隨機(jī)訪問(wèn)了使用共享單車(chē)的100名市民,并根據(jù)這100名市民對(duì)該項(xiàng)目滿意程度的評(píng)分,繪制了如下頻率分布直方圖: ![]()
(I)為了了解部分市民對(duì)“共享單車(chē)”評(píng)分較低的原因,該部門(mén)從評(píng)分低于60分的市民中隨機(jī)抽取2人進(jìn)行座談,求這2人評(píng)分恰好都在[50,60)的概率;
(II)根據(jù)你所學(xué)的統(tǒng)計(jì)知識(shí),判斷該項(xiàng)目能否通過(guò)考核,并說(shuō)明理由.
(注:滿意指數(shù)=
)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)盒子中裝有4個(gè)編號(hào)依次為1、2、3、4的球,這4個(gè)球除號(hào)碼外完全相同,先從盒子中隨機(jī)取一個(gè)球,該球的編號(hào)為X,將球放回袋中,然后再?gòu)拇须S機(jī)取一個(gè)球,該球的編號(hào)為Y
(1)列出所有可能結(jié)果.
(2)求事件A=“取出球的號(hào)碼之和小于4”的概率.
(3)求事件B=“編號(hào)X<Y”的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明需要購(gòu)買(mǎi)單價(jià)為3元的某種筆記本.他現(xiàn)有10元錢(qián),設(shè)他購(gòu)買(mǎi)時(shí)所花的錢(qián)數(shù)為自變量x(單位:元),筆記本的個(gè)數(shù)為y(單位:個(gè)),若y可以表示為x的函數(shù),則這個(gè)函數(shù)的定義域?yàn)?/span> .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】求分別滿足下列條件的直線l的方程:
(1)斜率是
,且與兩坐標(biāo)軸圍成的三角形的面積是6;
(2)經(jīng)過(guò)兩點(diǎn)A(1,0)、B(m,1);
(3)經(jīng)過(guò)點(diǎn)(4,-3),且在兩坐標(biāo)軸上的截距的絕對(duì)值相等.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四棱錐
中,
平面
,
∥
,
,![]()
(1)求證:
平面 ![]()
(2)求證:平面
平面 ![]()
(3)設(shè)點(diǎn)
為
中點(diǎn),在棱
上是否存在點(diǎn)
,使得
∥平面
?說(shuō)明理由.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com