設(shè)函數(shù)
,
(I)若
,求函數(shù)
的極小值,
(Ⅱ)若
,設(shè)
,函數(shù)
.若存在
使得
成立,求
的取值范圍.
(1)函數(shù)f(x)的極小值為f(1)=
(2)![]()
【解析】
試題分析:解:(I)![]()
,(2分)
令
,得
,或![]()
令
,得
,或
,
令
,得
???????????????????
x,
,f(x)的變化情況如下表
|
X |
|
|
|
1 |
|
|
|
+ |
0 |
- |
0 |
+ |
|
f(x) |
遞增 |
極大值 |
遞減 |
極小值 |
遞增 |
所以,函數(shù)f(x)的極小值為f(1)=
(5分)
(Ⅱ)![]()
當(dāng)a>0時(shí),
在區(qū)間(0,1)上的單調(diào)遞減,在區(qū)間(1,4)上單調(diào)遞增,
∴函數(shù)
在區(qū)間
上的最小值為![]()
又∵![]()
,
,
∴函數(shù)
在區(qū)間[0,4]上的值域是
,即
(7分)
又
在區(qū)間[0,4]上是增函數(shù),
且它在區(qū)間[0,4]上的值域是
(9分)
∵
-
=
=
,
∴存在
使得
成立只須僅須
-
<1![]()
.
(12分)
考點(diǎn):導(dǎo)數(shù)的運(yùn)用
點(diǎn)評(píng):主要是考查了導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用,判定單調(diào)性以及極值和最值的運(yùn)用,屬于中檔題。
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2010-2011年浙江省杭州市十四中學(xué)高二下學(xué)期期中考試?yán)頂?shù) 題型:解答題
(本小題滿分10分)
設(shè)函數(shù)
.
(I)若當(dāng)
時(shí),不等式![]()
恒成立,求實(shí)數(shù)m的取值范圍;
(II)若關(guān)于x的方程
在區(qū)間[0,2]上恰好有兩個(gè)相異的實(shí)根,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011年浙江省杭州市高二下學(xué)期期中考試文數(shù) 題型:解答題
(本小題滿分10分)
設(shè)函數(shù)
.
(I)若當(dāng)
時(shí),不等式
恒成立,求實(shí)數(shù)m的取值范圍;
(II)若關(guān)于x的方程
在區(qū)間[1,3]上恰好有兩個(gè)相異的實(shí)根,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011年河南省普通高中高考適應(yīng)性測(cè)試數(shù)學(xué)試卷(理科)(解析版) 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com