| A. | $\frac{π}{2}$ | B. | $\frac{π}{3}$ | C. | $\frac{π}{4}$ | D. | $\frac{π}{6}$ |
分析 運用正弦定理和正弦函數的值域,結合基本不等式的運用,即可得到三角形為等腰直角三角形,進而得到A的值.
解答 解:由正弦定理可得,
$\frac{sinA}{sinB}$+$\frac{sinB}{sinA}$=2sinC,
由sinC≤1,即有$\frac{sinA}{sinB}$+$\frac{sinB}{sinA}$≤2,
又$\frac{sinA}{sinB}$+$\frac{sinB}{sinA}$≥2,
當且僅當sinA=sinB,取得等號.
故sinC=1,C=$\frac{π}{2}$,
sinA=sinB,
即有A=B=$\frac{π}{4}$.
故選:C.
點評 本題考查正弦定理的運用,同時考查基本不等式的運用,注意等號成立的條件和正弦函數的值域,屬于中檔題.
科目:高中數學 來源: 題型:選擇題
| A. | 充分而不必要條件 | B. | 必要而不充分條件 | ||
| C. | 充分必要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
| A. | 向左平移$\frac{π}{6}$個單位長度 | B. | 向右平移$\frac{π}{6}$個單位長度 | ||
| C. | 向左平移$\frac{π}{3}$個單位長度 | D. | 向右平移在$\frac{π}{3}$個單位長度 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
| A. | $\frac{40}{3}$ | B. | $\frac{80}{3}$ | C. | $\frac{100}{3}$ | D. | 40 |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com