【題目】如圖所示,已知直三棱柱
的底面
為等腰直角三角形,點(diǎn)
為線段
的中點(diǎn).
![]()
(1)探究直線
與平面
的位置關(guān)系,并說明理由;
(2)若
,求三棱錐
的體積.
【答案】(1)
//平面
,證明見詳解;(2)
.
【解析】
(1)連接
交
于點(diǎn)
,取
中點(diǎn)為
,通過證明四邊形
為平行四邊,即可由線線平行推證線面平行;
(2)轉(zhuǎn)換三棱錐頂點(diǎn)至
,根據(jù)棱錐的體積公式即可容易求得.
(1)
//平面
,理由如下:
連接
,設(shè)![]()
,
因?yàn)樗倪呅?/span>
為平行四邊形,
所以
為
的中點(diǎn).
設(shè)
為
的中點(diǎn),連接
,如下圖所示:
![]()
則
//
,且
.
由已知得
//
,且
,
所以
//
,且
.
所以四邊形
為平行四邊形,
所以
//
,即
//
.
因?yàn)?/span>
平面
,
平面
,
所以
//平面
.
(2)由(1)可知,
//平面
.
所以點(diǎn)
到平面
的距離等于點(diǎn)
到平面
的距離,
所以
.
易知
平面
,連接
,
因?yàn)?/span>
,
所以![]()
.
所以三棱錐
的體積為
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某大學(xué)為了調(diào)查該校學(xué)生性別與身高的關(guān)系,對(duì)該校1000名學(xué)生按照
的比例進(jìn)行抽樣調(diào)查,得到身高頻數(shù)分布表如下:
男生身高頻率分布表
男生身高 (單位:厘米) |
|
|
|
|
|
|
頻數(shù) | 7 | 10 | 19 | 18 | 4 | 2 |
女生身高頻數(shù)分布表
女生身高 (單位:厘米) |
|
|
|
|
|
|
頻數(shù) | 3 | 10 | 15 | 6 | 3 | 3 |
(1)估計(jì)這1000名學(xué)生中女生的人數(shù);
(2)估計(jì)這1000名學(xué)生中身高在
的概率;
(3)在樣本中,從身高在
的女生中任取2名女生進(jìn)行調(diào)查,求這2名學(xué)生身高在
的概率.(身高單位:厘米)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分13分)
如圖,已知拋物線
,過點(diǎn)
任作一直線與
相交于
兩點(diǎn),過點(diǎn)
作
軸的平行線與直線
相交于點(diǎn)
(
為坐標(biāo)原點(diǎn)).
![]()
(1)證明:動(dòng)點(diǎn)
在定直線上;
(2)作
的任意一條切線
(不含
軸)與直線
相交于點(diǎn)
,與(1)中的定直線相交于點(diǎn)
,證明:
為定值,并求此定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線C的參數(shù)方程為
(
為參數(shù)).以原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸,建立極坐標(biāo)系.
(1)求曲線C的極坐標(biāo)方程;
(2)直線
(t為參數(shù))與曲線C交于A,B兩點(diǎn),求
最大時(shí),直線l的直角坐標(biāo)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)
滿足
,且
.
(1)求
的解析式;
(2)設(shè)函數(shù)
,當(dāng)
時(shí),求
的最小值;
(3)設(shè)函數(shù)
,若對(duì)任意
,總存在
,使得
成立,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
:
(
)過點(diǎn)
與
.
(1)求橢圓
的方程;
(2)設(shè)過橢圓
的右焦點(diǎn)
,且傾斜角為
的直線
和橢圓
交于
、
兩點(diǎn),對(duì)于橢圓
上任一點(diǎn)
,若
,求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知
為拋物線
的焦點(diǎn),過
的動(dòng)直線交拋物線
于
,
兩點(diǎn).當(dāng)直線與
軸垂直時(shí),
.
(1)求拋物線
的方程;
(2)設(shè)直線
的斜率為1且與拋物線的準(zhǔn)線
相交于點(diǎn)
,拋物線
上存在點(diǎn)
使得直線
,
,
的斜率成等差數(shù)列,求點(diǎn)
的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解某品種一批樹苗生長(zhǎng)情況,在該批樹苗中隨機(jī)抽取了容量為120的樣本,測(cè)量樹苗高度(單位:
),經(jīng)統(tǒng)計(jì),其高度均在區(qū)間
內(nèi),將其按
分成6組,制成如圖所示的頻率分布直方圖.其中高度為
及以上的樹苗為優(yōu)質(zhì)樹苗.
![]()
|
| 合計(jì) | |
優(yōu)質(zhì)樹苗 | 20 | ||
非優(yōu)質(zhì)樹苗 | 60 | ||
合計(jì) |
(1)求圖中
的值,并估計(jì)這批樹苗高度的中位數(shù)和平均數(shù)(同一組數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(2)已知所抽取的這120棵樹苗來自于
,
兩個(gè)試驗(yàn)區(qū),部分?jǐn)?shù)據(jù)如上列聯(lián)表:將列聯(lián)表補(bǔ)充完整,并判斷是否有
的把握認(rèn)為優(yōu)質(zhì)樹苗與
,
兩個(gè)試驗(yàn)區(qū)有關(guān)系,并說明理由.
參考數(shù)據(jù):
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
參考公式:
,其中
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
右焦點(diǎn)
,離心率為
,過
作兩條互相垂直的弦
,設(shè)
中點(diǎn)分別為
.
(1) 求橢圓的標(biāo)準(zhǔn)方程;
(2)求以
為頂點(diǎn)的四邊形的面積的取值范圍;
![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com