【題目】若x≥0,y≥0,且x+2y=1,則2x+3y2的最小值是 .
【答案】0.75
【解析】解:由題意x≥0,y≥0,且x+2y=1∴x=1﹣2y≥0,得y≤
,即0≤y≤
∴2x+3y2=3y2﹣4y+2=3(y﹣
)2+
,
又0≤y≤
,
∴當(dāng)y=
時,函數(shù)取到最小值為0.75
所以答案是:0.75.
【考點(diǎn)精析】利用函數(shù)的值域和二次函數(shù)的性質(zhì)對題目進(jìn)行判斷即可得到答案,需要熟知求函數(shù)值域的方法和求函數(shù)最值的常用方法基本上是相同的.事實(shí)上,如果在函數(shù)的值域中存在一個最。ù螅⿺(shù),這個數(shù)就是函數(shù)的最。ù螅┲担虼饲蠛瘮(shù)的最值與值域,其實(shí)質(zhì)是相同的;當(dāng)
時,拋物線開口向上,函數(shù)在
上遞減,在
上遞增;當(dāng)
時,拋物線開口向下,函數(shù)在
上遞增,在
上遞減.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直線坐標(biāo)系
中,以坐標(biāo)原點(diǎn)為極點(diǎn),
軸正半軸為極軸建立極坐標(biāo)系,直線
的參數(shù)方程為
(
為參數(shù)),曲線
的極坐標(biāo)方程為
.
(1)直線
的普通方程和曲線
的參數(shù)方程;
(2)設(shè)點(diǎn)
在
上,
在
處的切線與直線
垂直,求
的直角坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=
+
的兩個極值點(diǎn)分別為x1 , x2 , 且x1∈(0,1),x2∈(1,+∞);點(diǎn)P(m,n)表示的平面區(qū)域?yàn)镈,若函數(shù)y=loga(x+4)(a>1)的圖象上存在區(qū)域D內(nèi)的點(diǎn),則實(shí)數(shù)a的取值范圍是( )
A.(1,3]
B.(1,3)
C.(3,+∞)
D.[3,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)A(0,﹣2),橢圓E:
=1(a>b>0)的離心率為
,F(xiàn)是橢圓的焦點(diǎn),直線AF的斜率為
,O為坐標(biāo)原點(diǎn). (Ⅰ)求E的方程;
(Ⅱ)設(shè)過點(diǎn)A的直線l與E相交于P,Q兩點(diǎn),當(dāng)△OPQ的面積最大時,求l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={x|m+1≤x≤2m﹣1},B={x|x<﹣2或x>5}
(1)若AB,求實(shí)數(shù)m的取值范圍的集合;
(2)若A∩B=,求實(shí)數(shù)m的取值范圍的集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)=x3﹣3x2﹣9x+3,若函數(shù)g(x)=f(x)﹣m在x∈[﹣2,5]上有3個零點(diǎn),則m的取值范圍為( )
A.(﹣24,8)
B.(﹣24,1]
C.[1,8]
D.[1,8)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=f(x)的圖象與g(x)=logax(a>0,且a≠1)的圖象關(guān)于x軸對稱,且g(x)的圖象過(4,2)點(diǎn).
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)若f(x﹣1)>f(5﹣x),求x的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
袋中有形狀和大小完全相同的四種不同顏色的小球,每種顏色的小球各有4個,分別編號為1,2,3,4.現(xiàn)從袋中隨機(jī)取兩個球.
(Ⅰ)若兩個球顏色不同,求不同取法的種數(shù);
(Ⅱ)在(1)的條件下,記兩球編號的差的絕對值為隨機(jī)變量X,求隨機(jī)變量X的概率分布與數(shù)學(xué)期望.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com