【題目】在平面四邊形ABCD中,AB⊥BC,∠BCD=120°,△ABD是邊長為2的正三角形,E是AB邊上的動點,則![]()
的最小值為_____.
【答案】![]()
【解析】
將四邊形放入坐標(biāo)系,結(jié)合三角函數(shù)定義求出對應(yīng)點的坐標(biāo),利用向量數(shù)量積公式轉(zhuǎn)化為一元二次函數(shù)進行求求解即可.
解:當(dāng)四邊形ABCD放入平面直角坐標(biāo)系,
∵AB⊥BC,∠BCD=120°,△ABD是邊長為2的正三角形,
∴D(2cos30°,2sin30°),即D(
,1),
∵∠CDB=90°﹣60°=30°,∠BCD=120°
∴∠CDB=30°,即△BCD是等腰三角形,
取BD的中點E,
則BE=1,
則cos30°
,
即BC
,即C(
,0),
設(shè)E(0,b),0≤b≤2,
則
(
,b﹣1),
(
,b),
則![]()
(
,b﹣1)(
,b)=2+b(b﹣1)=b2﹣b+2
=(b
)2+2
═(b
)2
,
∴當(dāng)b
時,數(shù)量積取得最小值
,
故答案為:![]()
![]()
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在多面體
中,
,
,
,
,
且平面
平面
.
![]()
(1)設(shè)點
為線段
的中點,試證明
平面
;
(2)若直線
與平面
所成的角為
,求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=1nx
2x+1,其中a≠0.
(1)當(dāng)a=1時,求f(x)的極值;
(2)當(dāng)a>0時,證明:f(x)
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4—4:坐標(biāo)系與參數(shù)方程]
在直角坐標(biāo)系
中,曲線
的方程為
.以坐標(biāo)原點為極點,
軸正半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
(1)求
的直角坐標(biāo)方程;
(2)若
與
有且僅有三個公共點,求
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,已知內(nèi)角A,B,C所對的邊分別為a,b,c,向量m=(2sin B,-
),n=
,且m∥n.
(1)求銳角B的大;
(2)如果b=2,求△ABC的面積S△ABC的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列{an}的前n項和為Sn,且a2+2a4=a9,S6=36.
(1)求an,Sn;
(2)若數(shù)列{bn}滿足b1=1,
,求證:
(n∈N*).
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com