分析 (1)利用平面向量數(shù)量積的運(yùn)算和三角函數(shù)恒等變換的應(yīng)用化簡(jiǎn)函數(shù)解析式可得f(x)=sin(2x-$\frac{π}{6}$),由2kπ+$\frac{π}{2}$≤2x-$\frac{π}{6}$≤2kπ+$\frac{3π}{2}$,k∈Z,可得函數(shù)f(x)的單調(diào)遞減區(qū)間.
(2)將函數(shù)y=f(x)圖象上所有點(diǎn)向左平行移動(dòng)$\frac{π}{6}$個(gè)單位長(zhǎng)度,得到函數(shù)g(x)=sin(2x+$\frac{π}{6}$)的圖象,由x∈[0,$\frac{π}{4}$],可得:2x+$\frac{π}{6}$∈[$\frac{π}{6}$,$\frac{2π}{3}$],利用正弦函數(shù)的圖象和性質(zhì)可求sin(2x+$\frac{π}{6}$)∈[$\frac{1}{2}$,1],從而得解.
解答 解:(1)∵f(x)=$\overrightarrow{a}$•$\overrightarrow$+$\frac{1}{2}$=$\sqrt{3}$sinxcosx-cos2x+$\frac{1}{2}$=$\frac{\sqrt{3}}{2}$sin2x-$\frac{1}{2}$cos2x=sin(2x-$\frac{π}{6}$),
∴2kπ+$\frac{π}{2}$≤2x-$\frac{π}{6}$≤2kπ+$\frac{3π}{2}$,k∈Z,可得函數(shù)f(x)的單調(diào)遞減區(qū)間為:[k$π+\frac{π}{3}$,k$π+\frac{5π}{6}$],k∈Z;…6分
(2)將函數(shù)y=f(x)圖象上所有點(diǎn)向左平行移動(dòng)$\frac{π}{6}$個(gè)單位長(zhǎng)度,得到函數(shù)g(x)=sin(2x+$\frac{π}{6}$)的圖象,
∴g(x)=sin(2x+$\frac{π}{6}$),
∵x∈[0,$\frac{π}{4}$],可得:2x+$\frac{π}{6}$∈[$\frac{π}{6}$,$\frac{2π}{3}$],
∴sin(2x+$\frac{π}{6}$)∈[$\frac{1}{2}$,1].
∴函數(shù)y=g(x)在區(qū)間[0,$\frac{π}{4}$]上的值域?yàn)閇$\frac{1}{2}$,1]…12分
點(diǎn)評(píng) 本題主要考查了函數(shù)y=Asin(ωx+φ)的圖象變換,正弦函數(shù)的單調(diào)性,平面向量數(shù)量積的運(yùn)算和三角函數(shù)恒等變換的應(yīng)用,考查了數(shù)形結(jié)合思想,屬于中檔題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 90 | B. | 45 | C. | 2 | D. | 0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | x=$\frac{2}{5}$,且$\overrightarrow{AB}$與$\overrightarrow{a}$方向相同 | B. | x=-$\frac{2}{5}$,且$\overrightarrow{AB}$與$\overrightarrow{a}$方向相同 | ||
| C. | x=$\frac{2}{5}$,且$\overrightarrow{AB}$與$\overrightarrow{a}$方向相反 | D. | x=-$\frac{2}{5}$,且$\overrightarrow{AB}$與$\overrightarrow{a}$方向相反 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | -1 | B. | 0 | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | (-2,1) | B. | [-2,1] | C. | (-∞,-2)∪(1,+∞) | D. | (-∞,-2]∪[1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | m∈(-5,3) | B. | m∈(-3,5) | C. | m∈(-3,1)∪(1,5) | D. | m∈(-5,1)∪(1,3) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 向左平移$\frac{5π}{6}$個(gè)單位長(zhǎng)度 | B. | 向右平移$\frac{5π}{6}$個(gè)單位長(zhǎng)度 | ||
| C. | 向左平移$\frac{π}{6}$個(gè)單位長(zhǎng)度 | D. | 向右平移$\frac{π}{6}$個(gè)單位長(zhǎng)度 |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com