【題目】已知向量
=(sinx,cosx),
=(sin(x﹣
),sinx),函數(shù)f(x)=2![]()
,g(x)=f(
).
(1)求f(x)在[
,π]上的最值,并求出相應(yīng)的x的值;
(2)計(jì)算g(1)+g(2)+g(3)+…+g(2014)的值;
(3)已知t∈R,討論g(x)在[t,t+2]上零點(diǎn)的個(gè)數(shù).
【答案】(1)
.
(2)
.
(3) g(x)2個(gè)零點(diǎn).
【解析】
(1)根據(jù)向量的坐標(biāo)運(yùn)算,求出f(x)的表達(dá)式,再根據(jù)定義域求出最值及相應(yīng)的自變量。
(2)根據(jù)三角函數(shù)表達(dá)式,求出三角函數(shù)的變化周期及函數(shù)值,代入求解。
(3)跟雷討論在t取不同范圍時(shí),交點(diǎn)的個(gè)數(shù)問(wèn)題。
(1)f(x)=2![]()
=2sinxsin(x﹣
)+2sinxcosx=
sin2x+
sin2x
=
sin2x﹣
cos2x+
=sin(2x﹣
)+
,
∵x∈[
,π],∴
≤2x﹣
≤
,
∴﹣1≤sin(2x﹣
)≤
,f(x)最小值為
﹣1,f(x)最大值為
.
(2)由(1)得,f(x)=sin(2x﹣
)+
.∴g(x)=f(
)=sin(
x﹣
)+
.T=4,
∴g(1)+g(2)+g(3)+g(4)=g(5)+g(6)+g(7)+g(8)=…=g(2009)+g(2010)+g(2011)+g(2012).g(1)+g(2)+g(3)+g(4)=
,g(1)+g(2)+g(3)+…+g(2014)=503×
+g(1)+g(2)=1006
+
=
.
(3)g(x)在[t,t+2]上零點(diǎn)的個(gè)數(shù)等價(jià)于y=sin(
x﹣
)與y=﹣
兩圖象交點(diǎn)個(gè)數(shù).在同一直角坐標(biāo)系內(nèi)作出這兩個(gè)數(shù)的圖象.
當(dāng)4k<t<
+4k,k∈Z時(shí),由圖象可知,y=sin(
x﹣
)與y=﹣
兩圖象無(wú)交點(diǎn),g(x)無(wú)零點(diǎn)
當(dāng)
+4k≤t<2+4k或
+4k<t≤4+4k時(shí),y=sin(
x﹣
)與y=﹣
兩圖象1個(gè)交點(diǎn),g(x)1個(gè)零點(diǎn)
當(dāng)2+4k≤t≤
+4k時(shí),y=sin(
x﹣
)與y=﹣
兩圖象2個(gè)交點(diǎn),g(x)2個(gè)零點(diǎn).
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】從某小學(xué)隨機(jī)抽取100名同學(xué),將他們的身高(單位:厘米)數(shù)據(jù)繪制成頻率分布直方圖(如圖),
![]()
(1)由圖中數(shù)據(jù)求a的值;
(2)若要從身高在[120,130),[130,140),[140,150]三組內(nèi)的學(xué)生中,用分層抽樣的方法選取18人參加一項(xiàng)活動(dòng),則從身高在[140,150]內(nèi)的學(xué)生中選取的人數(shù)應(yīng)為多少?
(3)估計(jì)這所小學(xué)的小學(xué)生身高的眾數(shù),中位數(shù)(保留兩位小數(shù))及平均數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下表是20個(gè)國(guó)家和地區(qū)的二氧化碳排放總量及人均二氧化碳排放量.
國(guó)家和地區(qū) | 排放總量/千噸 | 人均排放量/噸 | 國(guó)家和地區(qū) | 排放總量/千噸 | 人均排放量/噸 | |
A | 10330000 | 7.4 | K | 480000 | 2.0 | |
B | 5300000 | 16.6 | L | 480000 | 7.5 | |
C | 3740000 | 7.3 | M | 470000 | 3.9 | |
D | 2070000 | 1.7 | N | 410000 | 5.3 | |
E | 1800000 | 12.6 | O | 390000 | 16.9 | |
F | 1360000 | 10.7 | P | 390000 | 6.4 | |
G | 840000 | 10.2 | Q | 370000 | 5.7 | |
H | 630000 | 12.7 | R | 330000 | 6.2 | |
I | 550000 | 15.7 | S | 320000 | 6.2 | |
J | 510000 | 2.6 | T | 490000 | 16.6 |
(1)這20個(gè)國(guó)家和地區(qū)人均二氧化碳排放量的中位數(shù)是多少?
(2)針對(duì)這20個(gè)國(guó)家和地區(qū),請(qǐng)你找出二氧化碳排放總量較少的前15%的國(guó)家和地區(qū).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(其中
).
(1)當(dāng)
時(shí),求
零點(diǎn)的個(gè)數(shù)k的值;
(2)在(1)的條件下,記這些零點(diǎn)分別為
,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]
在平面直角坐標(biāo)系中,直線
的參數(shù)方程為
(其中t為參數(shù)),現(xiàn)以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為
.
(1)寫(xiě)出直線l普通方程和曲線C的直角坐標(biāo)方程;
(2)過(guò)點(diǎn)
且與直線
平行的直線
交
于
,
兩點(diǎn),求
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】“楊輝三角”是我國(guó)數(shù)學(xué)史上的一個(gè)偉大成就,是二項(xiàng)式系數(shù)在三角形中的一種幾何排列.如圖所示,去除所有為1的項(xiàng),依此構(gòu)成數(shù)列2,3,3,4,6,4,5,10,10,5,…,則此數(shù)列的前56項(xiàng)和為_____.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)f(x)滿足f(x)=f(﹣4﹣x),f(0)=3,若
是f(x)的兩個(gè)零點(diǎn),且
.
(Ⅰ)求f(x)的解析式;
(Ⅱ)若x>0,求g(x)=
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)
.
(1)討論函數(shù)
的單調(diào)性;
(2)若函數(shù)
在
時(shí)恒成立,求實(shí)數(shù)
的取值范圍;
(3)若函數(shù)
,求證:函數(shù)
的極大值小于1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)
在圓
上,點(diǎn)在圓
上,則下列說(shuō)法錯(cuò)誤的是
A.
的取值范圍為![]()
B.
取值范圍為![]()
C.
的取值范圍為![]()
D. 若
,則實(shí)數(shù)
的取值范圍為![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com