【題目】如圖,正方體ABCD﹣A1B1C1D1的棱長為2,點(diǎn)P為面ADD1A1的對角線AD1的中點(diǎn).PM⊥平面ABCD交AD與M,MN⊥BD于N.![]()
(1)求異面直線PN與A1C1所成角的大小;(結(jié)果可用反三角函數(shù)值表示)
(2)求三棱錐P﹣BMN的體積.
【答案】
(1)解:∵點(diǎn)P為面ADD1A1的對角線AD1的中點(diǎn),且PM⊥平面ABCD,
∴PM為△ADD1的中位線,得PM=1,
又∵M(jìn)N⊥BD,
∴
,
∵在底面ABCD中,MN⊥BD,AC⊥BD,
∴MN∥AC,
又∵A1C1∥AC,∠PNM為異面直線PN與A1C1所成角,
在△PMN中,∠PMN為直角,
,
∴
.
即異面直線PN與A1C1所成角的大小為 ![]()
(2)解:
,
,
代入數(shù)據(jù)得三棱錐P﹣BMN的體積為 ![]()
【解析】(1)由已知易得M點(diǎn)為AD中點(diǎn),MN//A1C1,∠PNM即為所求異面直線所求角或其補(bǔ)角,再在三角形PNM中求解.
(2) VP BMN =
PM MN BN,代入數(shù)據(jù)即得三棱錐P﹣BMN的體積.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解異面直線及其所成的角的相關(guān)知識,掌握異面直線所成角的求法:1、平移法:在異面直線中的一條直線中選擇一特殊點(diǎn),作另一條的平行線;2、補(bǔ)形法:把空間圖形補(bǔ)成熟悉的或完整的幾何體,如正方體、平行六面體、長方體等,其目的在于容易發(fā)現(xiàn)兩條異面直線間的關(guān)系.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
的兩個(gè)零點(diǎn)
滿足
,集合
,則( )
A.m∈A , 都有f(m+3)>0
B.m∈A , 都有f(m+3)<0
C.m0∈A , 使得f(m0+3)=0
D.m0∈A , 使得f(m0+3)<0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)
,a為常數(shù),且f(3)= ![]()
(1)求a值;
(2)求使f(x)≥4的x值的取值范圍;
(3)設(shè)g(x)=﹣
x+m,對于區(qū)間[3,4]上每一個(gè)x值,不等式f(x)>g(x)恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量
=(cos
,﹣1)
=(
),設(shè)函數(shù)f(x)=
+1.
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)若關(guān)于x的方程f(x)=a在區(qū)間[0,π]上有實(shí)數(shù)解,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)f(x)=(x+a)(bx+2a)(常數(shù)a、b∈R)是偶函數(shù),且它的值域?yàn)椋ī仭蓿?],則該函數(shù)的解析式f(x)= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列{an}為遞增的等差數(shù)列,a1=f(x+1),a2=0,a3=f(x﹣1),其中f(x)=x2﹣4x+2,則數(shù)列{an}的通項(xiàng)公式為( )
A.an=n﹣2
B.an=2n﹣4
C.an=3n﹣6
D.an=4n﹣8
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)是以4為周期的奇函數(shù),當(dāng)x∈[﹣1,0)時(shí),f(x)=2x , 則f(log220)= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐A﹣BOC中,OA,OB,OC兩兩垂直,點(diǎn)D,E分別為棱BC,AC的中點(diǎn),F(xiàn)在棱AO上,且滿足OF=
,已知OA=OC=4,OB=2.![]()
(1)求異面直線AD與OC所成角的余弦值;
(2)求二面角C﹣EF﹣D的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列{an}的前n項(xiàng)和為Sn , 其中a2=﹣2,S6=6.
(1)求數(shù)列{an}的通項(xiàng);
(2)求數(shù)列{|an|}的前n項(xiàng)和為Tn .
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com