【題目】已知拋物線
,過
的直線
與拋物線C交于
兩點,點A在第一象限,拋物線C在
兩點處的切線相互垂直.
(1)求拋物線C的標(biāo)準(zhǔn)方程;
(2)若點P為拋物線C上異于
的點,直線
均不與
軸平行,且直線AP和BP交拋物線C的準(zhǔn)線分別于
兩點,
.
(i)求直線
的斜率;
(ⅱ)求
的最小值.
【答案】(1)
;(2)(i)
;(ⅱ)4.
【解析】
(1)利用導(dǎo)數(shù)的幾何意義分別求得
處切線的斜率,再根據(jù)斜率相乘為
,可得
的值,即可得答案;
(2)(i)根據(jù)
可得點
橫坐標(biāo)的關(guān)系,再結(jié)合韋達定理,可求得斜率;
(ii)由(i)易知
,設(shè)
,則
,再分別求出點
的橫坐標(biāo)用
表示,利用換元法可求得
的最值.
(1)設(shè)
.
拋物線C的方程可化為
.
拋物線C在
兩點處的切線的斜率分別為
.
由題可知直線l的斜率存在,故可設(shè)直線1的方程為
,
聯(lián)立
,消去y可得
,
.
,解得
.
∴拋物線C的標(biāo)準(zhǔn)方程為
;
(2)(i)由(1)可得
由
,可得
,
又點A在第一象限,解得
.
∴直線AB的斜率為
;
(ii)由(i)易知
.
設(shè)
,則
.
由題可知
,故
且
.
∴直線AP的斜率
,同理可得
.
∴直線
,當(dāng)
時,
.
直線
,當(dāng)
時,
.
.
令
,
當(dāng)且僅當(dāng)
,即
,也即
或
時,
取得最小值4.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,已知四邊形ABCD是邊長為2的正方形,
平面ABCD,E是棱PB的中點,且過AE和AD的平面
與棱PC交于點F.
![]()
(1)求證:
;
(2)若平面
平面PBC,求線段PA的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知m∈{11,13,15,17,19},n∈{2000,2001,…,2019},則mn的個位數(shù)是1的概率為____________ .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】猜商品的價格游戲, 觀眾甲:
主持人:高了! 觀眾甲:
主持人:低了! 觀眾甲:
主持人:高了! 觀眾甲:
主持人:低了! 觀眾甲:
主持人:低了! 則此商品價格所在的區(qū)間是 ( )
A.
B. ![]()
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“綠水青山就是金山銀山”的理念越來越深入人心,據(jù)此,某網(wǎng)站調(diào)查了人們對生態(tài)文明建設(shè)的關(guān)注情況,調(diào)查數(shù)據(jù)表明,參與調(diào)查的人員中關(guān)注生態(tài)文明建設(shè)的約占80%.現(xiàn)從參與調(diào)查的關(guān)注生態(tài)文明建設(shè)的人員中隨機選出200人,并將這200人按年齡(單位:歲)分組:第1組[15,25),第2組[25,35),第3組[35,45),第4組[45,55),第5組[55,65],得到的頻率分布直方圖如圖所示.
![]()
(Ⅰ)求這200人的平均年齡(每一組用該組區(qū)間的中點值作為代表)和年齡的中位數(shù)(保留一位小數(shù));
(Ⅱ)現(xiàn)在要從年齡在第1,2組的人員中用分層抽樣的方法抽取5人,再從這5人中隨機抽取3人進行問卷調(diào)查,求抽取的3人中恰有2人的年齡在第2組中的概率;
(Ⅲ)若從所有參與調(diào)查的人(人數(shù)很多)中任意選出3人,設(shè)這3人中關(guān)注生態(tài)文明建設(shè)的人數(shù)為X,求隨機變量X的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點
為拋物線
,點
為焦點,過點
的直線交拋物線于
兩點,點
在拋物線上,使得
的重心
在
軸上,直線
交
軸于點
,且
在點
右側(cè).記
的面積為
.
![]()
(1)求
的值及拋物線的標(biāo)準(zhǔn)方程;
(2)求
的最小值及此時點
的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某企業(yè)中隨機抽取了5名員工測試他們的藝術(shù)愛好指數(shù)
和創(chuàng)新靈感指數(shù)
,統(tǒng)計結(jié)果如下表(注:指數(shù)值越高素質(zhì)越優(yōu)秀):
![]()
(1)求創(chuàng)新靈感指數(shù)
關(guān)于藝術(shù)愛好指數(shù)
的線性回歸方程;
(2)企業(yè)為提高員工的藝術(shù)愛好指數(shù),要求員工選擇音樂和繪畫中的一種進行培訓(xùn),培訓(xùn)音樂次數(shù)
對藝術(shù)愛好指數(shù)
的提高量為
,培訓(xùn)繪畫次數(shù)
對藝術(shù)愛好指數(shù)
的提高量為
,其中
為參加培訓(xùn)的某員工已達到的藝術(shù)愛好指數(shù).藝術(shù)愛好指數(shù)已達到3的員工甲選擇參加音樂培訓(xùn),藝術(shù)愛好指數(shù)已達到4的員工乙選擇參加繪畫培訓(xùn),在他們都培訓(xùn)了20次后,估計誰的創(chuàng)新靈感指數(shù)更高?
參考公式:回歸方程
中,
,
.
參考數(shù)據(jù):
,![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某廠生產(chǎn)不同規(guī)格的一種產(chǎn)品,根據(jù)檢測標(biāo)準(zhǔn),其合格產(chǎn)品的質(zhì)量y(g)與尺寸x(mm)之間近似滿足關(guān)系式
c為大于0的常數(shù)).按照某項指標(biāo)測定,當(dāng)產(chǎn)品質(zhì)量與尺寸的比在區(qū)間
內(nèi)時為優(yōu)等品.現(xiàn)隨機抽取6件合格產(chǎn)品,測得數(shù)據(jù)如下:
尺寸 | 38 | 48 | 58 | 68 | 78 | 88 |
質(zhì)量 | 16.8 | 18.8 | 20.7 | 22.4 | 24 | 25.5 |
質(zhì)量與尺寸的比 | 0.442 | 0.392 | 0.357 | 0.329 | 0.308 | 0.290 |
(1)現(xiàn)從抽取的6件合格產(chǎn)品中再任選3件,記ξ為取到優(yōu)等品的件數(shù),試求隨機變量ξ的分布列和期望;
(2)根據(jù)測得數(shù)據(jù)作了初步處理,得相關(guān)統(tǒng)計量的值如下表:
|
|
|
|
75.3 | 24.6 | 18.3 | 101.4 |
根據(jù)所給統(tǒng)計量,求y關(guān)于x的回歸方程.
附:對于樣本
,其回歸直線
的斜率和截距的最小二乘估計公式分別為:
.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com