【題目】在平面直角坐標(biāo)系
中,曲線(xiàn)
的參數(shù)方程為
(
為參數(shù),
),以原點(diǎn)
為極點(diǎn),
軸正半軸為極軸,建立極坐標(biāo)系,曲線(xiàn)
的極坐標(biāo)方程為
.
(1)求曲線(xiàn)
與
的直角坐標(biāo)方程;
(2)當(dāng)
與
有兩個(gè)公共點(diǎn)時(shí),求實(shí)數(shù)
的取值范圍.
【答案】(1)曲線(xiàn)
的直角坐標(biāo)方程為
;(2)
.
【解析】試題分析:(1)第一問(wèn)直接利用恒等消參法把曲線(xiàn)
的參數(shù)方程化為直角坐標(biāo)方程,利用極直互化的公式把
的極坐標(biāo)方程化為直角坐標(biāo);(2)第二問(wèn),畫(huà)出曲線(xiàn)曲線(xiàn)
對(duì)應(yīng)的半圓弧,再畫(huà)出曲線(xiàn)
對(duì)應(yīng)的直線(xiàn),利用數(shù)形結(jié)合分析得到t的取值范圍.
試題解析:(1)∵曲線(xiàn)
的參數(shù)方程為
(
為參數(shù),
),
∴曲線(xiàn)
的普通方程為:
(
,
),
∵曲線(xiàn)
的極坐標(biāo)方程為
,
∴曲線(xiàn)
的直角坐標(biāo)方程為
.
(2)∵曲線(xiàn)
的普通方程為:
(
,
)為半圓弧,由曲線(xiàn)
于
有兩個(gè)公共點(diǎn),則當(dāng)
與
相切時(shí),得
,整理得
,
∴
或
(舍去),
當(dāng)
過(guò)點(diǎn)
時(shí),
,所以t=-1.
∴當(dāng)
與
有兩個(gè)公共點(diǎn)時(shí),
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱柱
中,已知
側(cè)面
,
,
,
,點(diǎn)
在棱
上.
![]()
(Ⅰ)求證:
平面
;
(Ⅱ)試確定點(diǎn)
的位置,使得二面角
的余弦值為
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某食品集團(tuán)生產(chǎn)的火腿按行業(yè)生產(chǎn)標(biāo)準(zhǔn)分成8個(gè)等級(jí),等級(jí)系數(shù)
依次為1,2,3,…,8,其中
為標(biāo)準(zhǔn)
,
為標(biāo)準(zhǔn)
.已知甲車(chē)間執(zhí)行標(biāo)準(zhǔn)
,乙車(chē)間執(zhí)行標(biāo)準(zhǔn)
生產(chǎn)該產(chǎn)品,且兩個(gè)車(chē)間的產(chǎn)品都符合相應(yīng)的執(zhí)行標(biāo)準(zhǔn).
(1)已知甲車(chē)間的等級(jí)系數(shù)
的概率分布列如下表,若
的數(shù)學(xué)期望E(X1)=6.4,求
,
的值;
X1 | 5 | 6 | 7 | 8 |
P | 0.2 |
|
|
|
(2)為了分析乙車(chē)間的等級(jí)系數(shù)
,從該車(chē)間生產(chǎn)的火腿中隨機(jī)抽取30根,相應(yīng)的等級(jí)系數(shù)組成一個(gè)樣本如下:3 5 3 3 8 5 5 6 3 4 6 3 4 7 5 3 4 8 5 3 8 3 4 3 4 4 7 5 6 7
用該樣本的頻率分布估計(jì)總體,將頻率視為概率,求等級(jí)系數(shù)
的概率分布列和均值;
(3)從乙車(chē)間中隨機(jī)抽取5根火腿,利用(2)的結(jié)果推斷恰好有三根火腿能達(dá)到標(biāo)準(zhǔn)
的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
,其中
.
(Ⅰ)函數(shù)
的圖象能否與
軸相切?若能,求出實(shí)數(shù)
,若不能,請(qǐng)說(shuō)明理由;
(Ⅱ)求最大的整數(shù)
,使得對(duì)任意
,不等式
恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x3+ax2+bx+1(a>0,b∈R)有極值,且導(dǎo)函數(shù)f'(x)的極值點(diǎn)是f(x)的零點(diǎn).(極值點(diǎn)是指函數(shù)取極值時(shí)對(duì)應(yīng)的自變量的值)
(1)求b關(guān)于a的函數(shù)關(guān)系式,并寫(xiě)出定義域;
(2)證明:b2>3a;
(3)若f(x),f'(x)這兩個(gè)函數(shù)的所有極值之和不小于-
,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系
中,直線(xiàn)
的參數(shù)方程是
(
為參數(shù)),以
為極點(diǎn),
軸的正半軸為極軸,建立極坐標(biāo)系,曲線(xiàn)
的極坐標(biāo)方程為
,且直線(xiàn)
與曲線(xiàn)
交于
兩點(diǎn).
(Ⅰ)求直線(xiàn)
的普通方程及曲線(xiàn)
的直角坐標(biāo)方程;
(Ⅱ)把直線(xiàn)
與
軸的交點(diǎn)記為
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩家銷(xiāo)售公司擬各招聘一名產(chǎn)品推銷(xiāo)員,日工資方案如下: 甲公司規(guī)定底薪80元,每銷(xiāo)售一件產(chǎn)品提成1元; 乙公司規(guī)定底薪120元,日銷(xiāo)售量不超過(guò)45件沒(méi)有提成,超過(guò)45件的部分每件提成8元.
(I)請(qǐng)將兩家公司各一名推銷(xiāo)員的日工資
(單位: 元) 分別表示為日銷(xiāo)售件數(shù)
的函數(shù)關(guān)系式;
(II)從兩家公司各隨機(jī)選取一名推銷(xiāo)員,對(duì)他們過(guò)去100天的銷(xiāo)售情況進(jìn)行統(tǒng)計(jì),得到如下條形圖。若記甲公司該推銷(xiāo)員的日工資為
,乙公司該推銷(xiāo)員的日工資為
(單位: 元),將該頻率視為概率,請(qǐng)回答下面問(wèn)題:
某大學(xué)畢業(yè)生擬到兩家公司中的一家應(yīng)聘推銷(xiāo)員工作,如果僅從日均收入的角度考慮,請(qǐng)你利用所學(xué)的統(tǒng)計(jì)學(xué)知識(shí)為他作出選擇,并說(shuō)明理由.
![]()
【答案】(I)見(jiàn)解析; (Ⅱ)見(jiàn)解析.
【解析】分析:(I)依題意可得甲公司一名推銷(xiāo)員的工資與銷(xiāo)售件數(shù)的關(guān)系是一次函數(shù)的關(guān)系式,而乙公司是分段函數(shù)的關(guān)系式,由此解得;(Ⅱ)分別根據(jù)條形圖求得甲、乙公司一名推銷(xiāo)員的日工資的分布列,從而可分別求得數(shù)學(xué)期望,進(jìn)而可得結(jié)論.
詳解:(I)由題意得,甲公司一名推銷(xiāo)員的日工資
(單位:元) 與銷(xiāo)售件數(shù)
的關(guān)系式為:
.
乙公司一名推銷(xiāo)員的日工資
(單位: 元) 與銷(xiāo)售件數(shù)
的關(guān)系式為: ![]()
(Ⅱ)記甲公司一名推銷(xiāo)員的日工資為
(單位: 元),由條形圖可得
的分布列為
| 122 | 124 | 126 | 128 | 130 |
| 0.2 | 0.4 | 0.2 | 0.1 | 0.1 |
記乙公司一名推銷(xiāo)員的日工資為
(單位: 元),由條形圖可得
的分布列為
| 120 | 128 | 144 | 160 |
| 0.2 | 0.3 | 0.4 | 0.1 |
∴![]()
∴僅從日均收入的角度考慮,我會(huì)選擇去乙公司.
點(diǎn)睛:求解離散型隨機(jī)變量的數(shù)學(xué)期望的一般步驟為:
第一步是“判斷取值”,即判斷隨機(jī)變量的所有可能取值,以及取每個(gè)值所表示的意義;
第二步是“探求概率”,即利用排列組合,枚舉法,概率公式,求出隨機(jī)變量取每個(gè)值時(shí)的概率;
第三步是“寫(xiě)分布列”,即按規(guī)范形式寫(xiě)出分布列,并注意用分布列的性質(zhì)檢驗(yàn)所求的分布列或某事件的概率是否正確;
第四步是“求期望值”,一般利用離散型隨機(jī)變量的數(shù)學(xué)期望的定義求期望的值
【題型】解答題
【結(jié)束】
19
【題目】如圖,在四棱錐
中,底面
為菱形,
平面
,
,
,
,
分別是
,
的中點(diǎn).
![]()
(1)證明:
;
(2)設(shè)
為線(xiàn)段
上的動(dòng)點(diǎn),若線(xiàn)段
長(zhǎng)的最小值為
,求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為探索課堂教學(xué)改革,江門(mén)某中學(xué)數(shù)學(xué)老師用傳統(tǒng)教學(xué)和“導(dǎo)學(xué)案”兩種教學(xué)方式,在甲、乙兩個(gè)平行班進(jìn)行教學(xué)實(shí)驗(yàn)。為了解教學(xué)效果,期末考試后,分別從兩個(gè)班級(jí)各隨機(jī)抽取20名學(xué)生的成績(jī)進(jìn)行統(tǒng)計(jì),得到如下莖葉圖。記成績(jī)不低于70分者為“成績(jī)優(yōu)良”。
![]()
(Ⅰ)請(qǐng)大致判斷哪種教學(xué)方式的教學(xué)效果更佳,并說(shuō)明理由;
(Ⅱ)構(gòu)造一個(gè)教學(xué)方式與成績(jī)優(yōu)良列聯(lián)表,并判斷能否在犯錯(cuò)誤的概率不超過(guò)0.05的前提下認(rèn)為“成績(jī)優(yōu)良與教學(xué)方式有關(guān)”?
(附:
,其中
是樣本容量)
獨(dú)立性檢驗(yàn)臨界值表:
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在
中,
分別是角
的對(duì)邊,已知
,現(xiàn)有以下判斷:
①
不可能等于15; ②
;
③作
關(guān)于
的對(duì)稱(chēng)點(diǎn)
的最大值是
;
④若
為定點(diǎn),則動(dòng)點(diǎn)
的軌跡圍成的封閉圖形的面積是
。請(qǐng)將所有正確的判斷序號(hào)填在橫線(xiàn)上______________。
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com