| A. | 1 | B. | 3 | C. | 4 | D. | 6 |
分析 求函數(shù)的導(dǎo)數(shù),判斷函數(shù)的單調(diào)性和極值,從而求最值.
解答 解:∵f(x)=-4x3+6x2+1,
∴f′(x)=-12x2+12x=-12(x+1)(x-1);
由f′(x)=0得x=1或x=-1(舍),
當(dāng)x∈[0,1),f′(x)>0;此時函數(shù)f(x)單調(diào)遞增,
當(dāng)x∈(1,3]時,f′(x)<0;此時函數(shù)f(x)單調(diào)遞減,
即當(dāng)x=1時,函數(shù)取得極大值同時也是最大值f(1)=-4+6+1=3,
故選:B
點(diǎn)評 本題考查了函數(shù)的最值的求法及導(dǎo)數(shù)的綜合應(yīng)用,求函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性是解決本題的關(guān)鍵.,屬于中檔題.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 6 | B. | $\frac{3\sqrt{3}}{2}$ | C. | $\frac{2\sqrt{21}}{3}$ | D. | $\sqrt{10}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 先增后減 | B. | 先減后增 | C. | 減函數(shù) | D. | 增函數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | y=sinx | B. | y=-|x-1| | C. | y=ex-e-x | D. | y=ln$\frac{1-x}{1+x}$ |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com