欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

13.某中學(xué)為了落實“陽光運動一小時”活動,計劃在一塊直角三角形ABC的空地上修建一個占地面積為S的矩形AMPN健身場地.如圖,點M在AC上,點N在AB上,且P點在斜邊BC上,已知∠ACB=60°且|AC|=30米,|AM|=x米,x∈[10,20].
(1)試用x表示S,并求S的取值范圍;
(2)若在矩形AMPN以外(陰影部分)鋪上草坪.已知:矩形AMPN健身場地每平方米的造價為$\frac{37k}{{\sqrt{S}}}$,草坪的每平方米的造價為$\frac{12k}{{\sqrt{S}}}$(k為正常數(shù)).設(shè)總造價T關(guān)于S的函數(shù)為T=f(S),試問:如何選取|AM|的長,才能使總造價T最低.

分析 (1)根據(jù)題意,分析可得,欲求健身場地占地面積,只須求出圖中矩形的面積即可,再結(jié)合矩形的面積計算公式求出它們的面積即得,最后再根據(jù)二次函數(shù)的性質(zhì)得出其范圍;
(2)對于(1)所列不等式,考慮到其中兩項之積為定值,可利用基本不等式求它的最大值,從而解決問題.

解答 解:(1)在Rt△PMC中,顯然|MC|=30-x,∠PCM=60°,
∴$|PM|=|MC|•tan∠PCM=\sqrt{3}(30-x)$,…(2分)
矩形AMPN的面積$S=|PM|•|MC|=\sqrt{3}x(30-x)$,x∈[10,20]…(4分)
于是$200\sqrt{3}≤S≤225\sqrt{3}$為所求.…(6分)
(2)矩形AMPN健身場地造價T1=$37k\sqrt{S}$…(7分)
又△ABC的面積為$450\sqrt{3}$,即草坪造價T2=$\frac{12k}{{\sqrt{S}}}(450\sqrt{3}-S)$,…(8分)
由總造價T=T1+T2,∴$T=25k(\sqrt{S}+\frac{{216\sqrt{3}}}{{\sqrt{S}}})$,$200\sqrt{3}≤S≤225\sqrt{3}$.…(10分)
∵$\sqrt{S}+\frac{{216\sqrt{3}}}{{\sqrt{S}}}≥12\sqrt{6\sqrt{3}}$,…(11分)
當且僅當$\sqrt{S}=\frac{{216\sqrt{3}}}{{\sqrt{S}}}$即$S=216\sqrt{3}$時等號成立,…(12分)
此時$\sqrt{3}x(30-x)=216\sqrt{3}$,解得x=12或x=18,
所以選取|AM|的長為12米或18米時總造價T最低.…(14分)

點評 本小題主要考查函數(shù)模型的選擇與應(yīng)用、基本不等式的應(yīng)用、矩形的面積等基礎(chǔ)知識,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.解不等式:$\frac{4}{x-1}$≤x-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=x+a1nx,其中a為常數(shù),且0<a<4.
(1)用定義證明:函數(shù)g(x)=f(x)+$\frac{1}{x}$-alnx在區(qū)間(0,1)上單凋遞減;
(2)當a=1時,求f(x)在[e,e2](e=2.71828…)上的值域:
(3)若f(x)≥3e+1在區(qū)間[e,e2]上有解,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.某公司以25萬元購得某項節(jié)能產(chǎn)品的生產(chǎn)技術(shù)后,再投入100萬元購買生產(chǎn)設(shè)備,進行該產(chǎn)品的生產(chǎn)加工.已知生產(chǎn)這種產(chǎn)品的成本價為每件20元.經(jīng)過市場調(diào)研發(fā)現(xiàn),該產(chǎn)品的銷售單價定在25元到35元之間較為合理,并且該產(chǎn)品的年銷售量y(萬件)與銷售單價x(元)之間的函數(shù)關(guān)系式為$y=\left\{\begin{array}{l}40-x({25≤x≤30})\\ 25-0.5x({30<x≤35})\end{array}\right.$.
(年獲利=年銷售收入-生產(chǎn)成本-投資成本)
(1)當銷售單價定為28元時,該產(chǎn)品的年銷售量為多少?
(2)求該公司第一年的年獲利W(萬元)與銷售單價x(元)之間的函數(shù)關(guān)系式,并說明投資的第一年,該公司是盈利還是虧損.若是盈利,最大利潤是多少?若是虧損,最小虧損是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.定義:對于數(shù)列{xn},如果存在常數(shù)p,使對任意正整數(shù)n,總有(xn+1-p)(xn-p)<0成立,那么我們稱數(shù)列{xn}為“p-擺動數(shù)列”.
(1)設(shè)an=2n-1,${b_n}={q^n}$(-1<q<0),n∈N*,判斷數(shù)列{an}、{bn}是否為“p-擺動數(shù)列”,并說明理由;
(2)已知“p-擺動數(shù)列”{cn}滿足:${c_{n+1}}=\frac{1}{{{c_n}+1}}$,c1=1.求常數(shù)p的值;
(3)設(shè)${d_n}={(-1)^n}•(\;2n-1)$,n∈N*,且數(shù)列{dn}的前n項和為Sn.求證:數(shù)列{Sn}是“p-擺動數(shù)列”,并求出常數(shù)p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.在如圖所示的正方體中.
(1)指出哪些棱與BB1是異面直線,哪些棱與對角線BD1是異面直線.
(2)分別求出直線DD1與BC1、A1D1及DC1所成的角度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0,a2-b2=c2,c>0)與y軸正半軸的交點為B,點P在橢圓上,則|BP|的最大值為( 。
A.2bB.$\frac{{a}^{2}}{c}$C.2b或$\frac{^{2}}{c}$D.2b或$\frac{{a}^{2}}{c}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.函數(shù)y=tan($\frac{π}{3}$-x)的定義域是( 。
A.{x|x∈R,且x≠-$\frac{π}{3}$}B.{x|x∈R,且x≠$\frac{5}{6}π$}
C.{x|x∈R,且x≠kπ+$\frac{5}{6}$π,k∈Z}D.{x|x∈R,且x≠kπ-$\frac{5}{6}$π,k∈Z}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.在△ABC中,$\overrightarrow{AB}$=$\overrightarrow{c}$,$\overrightarrow{AC}$=$\overrightarrow$,若D,E分別在BC,BA上,且$\overrightarrow{BD}$=2$\overrightarrow{DC}$,$\overrightarrow{BE}$=2$\overrightarrow{EA}$,則向量$\frac{2}{3}$$\overrightarrow$+$\frac{1}{3}$$\overrightarrow{c}$表示( 。
A.$\overrightarrow{AD}$B.$\overrightarrow{CE}$C.$\overrightarrow{DE}$D.$\overrightarrow{ED}$

查看答案和解析>>

同步練習(xí)冊答案