分析 (1)根據(jù)函數(shù)的單調(diào)性的定義證明即可;
(2)根據(jù)函數(shù)的單調(diào)性得到關(guān)于a的方程組,解出即可.
解答 (1)證明:設(shè)x2>x1>0,
則f(x2)-f(x1)=($\frac{1}{a}$-$\frac{1}{{x}_{2}}$)-($\frac{1}{a}$-$\frac{1}{{x}_{1}}$)=$\frac{1}{{x}_{1}}$-$\frac{1}{{x}_{2}}$=$\frac{{{x}_{2}-x}_{1}}{{{x}_{1}x}_{2}}$,
∵x2>x1>0,∴x2-x1>0,
∴$\frac{{{x}_{2}-x}_{1}}{{{x}_{1}x}_{2}}$>0,即f(x2)>f(x1),
∴f(x)在(0,+∞)遞增;
(2)解:∵f(x)在(0,+∞)遞增,
且定義域和值域均是[$\frac{1}{2}$,2],
∴$\left\{{\begin{array}{l}{f(\frac{1}{2})=\frac{1}{a}-2=\frac{1}{2}}\\{f(2)=\frac{1}{a}-\frac{1}{2}=2}\end{array}}\right.$,
所以存在實數(shù)$a=\frac{2}{5}$.
點評 本題考查了函數(shù)的單調(diào)性問題,考查導(dǎo)數(shù)的應(yīng)用,是一道中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 0 | B. | 1 | C. | lg4 | D. | 3lg2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 該平面內(nèi)存在一向量$\overrightarrow a$不能表示$\overrightarrow a=m\overrightarrow{e_1}+n\overrightarrow{e_2}$,其中m,n為實數(shù) | |
| B. | 若向量$m\overrightarrow{e_1}+n\overrightarrow{e_2}$與$\overrightarrow a$共線,則存在唯一實數(shù)λ使得$m\overrightarrow{e_1}+n\overrightarrow{e_2}=λ\overrightarrow a$ | |
| C. | 若實數(shù)m,n使得$m\overrightarrow{e_1}+n\overrightarrow{e_2}=\overrightarrow 0$,則m=n=0 | |
| D. | 對平面中的某一向量$\overrightarrow a$,存在兩對以上的實數(shù)m,n使得$\overrightarrow a=m\overrightarrow{e_1}+n\overrightarrow{e_2}$ |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com