【題目】已知曲線
在點(diǎn)
處的切線與曲線
也相切.
(1)求實(shí)數(shù)
的值;
(2)設(shè)函數(shù)
,若
且
,證明:
.
【答案】(1)
;(2)見解析
【解析】試題分析:(1)根據(jù)導(dǎo)數(shù)的幾何意義得到
,先求出
在
處的切線方程是
,再根據(jù)題意這個(gè)直線也是
的切線,聯(lián)立判別式等于零解出參數(shù)即可;(2)研究函數(shù)的單調(diào)性得到當(dāng)
時(shí),
是減函數(shù);當(dāng)
時(shí),
是增函數(shù),再證當(dāng)
時(shí),
恒成立,即
,賦值法得到
,證得即可。
(1) ∵
,當(dāng)
時(shí),
,故
在
處的切線方程是
,聯(lián)立
,消去
得
,∴
,∴
或1,故
.
(2)由(1)知
,由
,則
.又
,當(dāng)
時(shí),
是減函數(shù);當(dāng)
時(shí),
是增函數(shù),令
,
,再令
,則
,∴
.又
,當(dāng)
時(shí),
恒成立,即
恒成立.令
,即
,有
,即
,∵
,∴
.又
,必有
,又當(dāng)
時(shí),
是增函數(shù), ∴-
,即
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某媒體為調(diào)查喜愛娛樂節(jié)目
是否與觀眾性別有關(guān),隨機(jī)抽取了30名男性和30名女性觀眾,抽查結(jié)果用等高條形圖表示如圖:
![]()
(1)根據(jù)該等高條形圖,完成下列
列聯(lián)表,并用獨(dú)立性檢驗(yàn)的方法分析,能否在犯錯(cuò)誤的概率不超過0.05的前提下認(rèn)為喜歡娛樂節(jié)目
與觀眾性別有關(guān)?
![]()
(2)從性觀眾中按喜歡節(jié)目
與否,用分層抽樣的方法抽取5名做進(jìn)一步調(diào)查.從這5名中任選2名,求恰有1名喜歡節(jié)目
和1名不喜歡節(jié)目
的概率.
附:
| 0.100 | 0.050 | 0.010 | 0.001 |
| 2.706 | 3.841 | 6.635 | 10.828 |
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在三棱錐
中,底面
是邊長(zhǎng)為 2 的正三角形,頂點(diǎn)
在底面
上的射影為
的中心,若
為
的中點(diǎn),且直線
與底面
所成角的正切值為
,則三棱錐
外接球的表面積為( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校對(duì)高三學(xué)生一次模擬考試的數(shù)學(xué)成績(jī)進(jìn)行分析,隨機(jī)抽取了部分學(xué)生的成績(jī),得到如圖所示的成績(jī)頻率分布直方圖.![]()
(1)根據(jù)頻率分布直方圖估計(jì)這次考試全校學(xué)生數(shù)學(xué)成績(jī)的眾數(shù)、中位數(shù)和平均值;
(2)若成績(jī)不低于80分為優(yōu)秀成績(jī),視頻率為概率,從全校學(xué)生中有放回的任選3名學(xué)生,用變量ξ表示3名學(xué)生中獲得優(yōu)秀成績(jī)的人數(shù),求變量ξ的分布列及數(shù)學(xué)期望E(ξ).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某景點(diǎn)擬建一個(gè)扇環(huán)形狀的花壇(如圖所示),按設(shè)計(jì)要求扇環(huán)的周長(zhǎng)為36米,其中大圓弧所在圓的半徑為14米,設(shè)小圓弧所在圓的半徑為
米,圓心角為
(弧度).
⑴ 求
關(guān)于
的函數(shù)關(guān)系式;
⑵ 已知對(duì)花壇的邊緣(實(shí)線部分)進(jìn)行裝飾時(shí),直線部分的裝飾費(fèi)用為4元/米,弧線部分的裝飾費(fèi)用為16元/米,設(shè)花壇的面積與裝飾總費(fèi)用之比為
,求
關(guān)于
的函數(shù)關(guān)系式,并求出
的最大值.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,函數(shù)
x.
(1)若g(mx2+2x+m)的定義域?yàn)镽,求實(shí)數(shù)m的取值范圍;
(2)當(dāng)x∈[﹣1,1]時(shí),求函數(shù)y=[f(x)]2﹣2af(x)+3的最小值h(a);
(3)是否存在非負(fù)實(shí)數(shù)m、n,使得函數(shù)
的定義域?yàn)閇m,n],值域?yàn)閇2m,2n],若存在,求出m、n的值;若不存在,則說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在封閉的直三棱柱ABC﹣A1B1C1內(nèi)有一個(gè)體積為V的球,若AB⊥BC,AB=6,BC=8,AA1=5,則V的最大值是( )
A.4π
B.![]()
C.![]()
D.![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com