已知函數(shù)f(x)的定義域?yàn)镽,對(duì)任意的x1,x2都滿足f(x1+x2)=f(x1)+f(x2),當(dāng)x>0時(shí),f(x)>0.
(1)試判斷f(x)的奇偶性.
(2)試判斷f(x)的單調(diào)性,并證明.
(3)若f(cos2θ-3)+f(4m-2mcosθ)>0對(duì)所有的θ∈[0,
]恒成立,求實(shí)數(shù)m的取值范圍.
|
解:(1)令x1=x2=0,則f(0)=2f(0) 令x1=x,x2=-x,則有f(0)=f(x)+f(-x), ∴f(-x)=-f(x),∴f(x)為奇函數(shù). (2)對(duì)任意的x 則f(x1)-f(x2)=f(x1)+f(-x2)=f(x1-x2)=-f(x2-x1)<0, 故f(x)為R上的增函數(shù). (3)∵f(cos2θ-3)+f(4m-2mcosθ)>0,θ∈[0, ∴f(cos2θ-3)>-f(4m-2mcosθ)=f(2mcosθ-4m). 由(2)知f(x)是R上的增函數(shù), ∴cos2θ-3>m(2cosθ-4),當(dāng)θ∈[0, 又由2cosθ-4<0,∴m> 而-(2-cosθ+ ∴m>4-2 |
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
| 1 |
| 3 |
| a-3 |
| 2 |
| x | 2 1 |
| x | 2 2 |
| x | 3 1 |
| x | 3 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
| x |
| 1+x |
| 1 |
| 10 |
| 1 |
| 9 |
| 1 |
| 2 |
| 19 |
| 2 |
| 19 |
| 2 |
| 1 |
| 2 |
| 1 |
| 9 |
| 1 |
| 10 |
| 1 |
| x |
| ||
1+
|
| x |
| 1+x |
| 1 |
| 1+x |
| x |
| 1+x |
| 1+x |
| 1+x |
| 1 | ||
2x+
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
| ||
| 1-x |
| 1 |
| 2 |
| 1 |
| n |
| 2 |
| n |
| n-1 |
| n |
| lim |
| n→∞ |
| 4Sn-9Sn |
| 4Sn+1+9Sn+1 |
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
| x+1-a |
| a-x |
| 1 |
| 2 |
| 1 |
| 2 |
| 3 |
| 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
| ||
| 1-x |
| 1 |
| n |
| 2 |
| n |
| n-1 |
| n |
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
| sinα | ||
|
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com