已知橢圓
的長軸長是短軸長的兩倍,焦距為
.
(1)求橢圓
的標(biāo)準(zhǔn)方程;
(2)設(shè)不過原點(diǎn)
的直線
與橢圓
交于兩點(diǎn)
、
,且直線
、
、
的斜率依次成等比數(shù)列,求△
面積的取值范圍.
(1)
;(2)△
面積的取值范圍為
。
【解析】
試題分析:(1)由已知得![]()
![]()
∴
方程:
(4分)
(2)由題意可設(shè)直線
的方程為:
![]()
聯(lián)立
消去
并整理,得:![]()
則△
,
此時設(shè)
、
∴![]()
于是
(7分)
又直線
、
、
的斜率依次成等比數(shù)列,
∴
![]()
由
得:
.又由△
得:![]()
顯然
(否則:
,則
中至少有一個為0,直線
、
中至少有一個斜率不存在,矛盾。 (10分)
設(shè)原點(diǎn)
到直線
的距離為
,則
![]()
![]()
故由
得取值范圍可得△
面積的取值范圍為
(13分)
考點(diǎn):本題主要考查橢圓標(biāo)準(zhǔn)方程,直線與橢圓的位置關(guān)系。
點(diǎn)評:中檔題,曲線關(guān)系問題,往往通過聯(lián)立方程組,得到一元二次方程,運(yùn)用韋達(dá)定理。本題求橢圓標(biāo)準(zhǔn)方程時,主要運(yùn)用了橢圓的定義及幾何性質(zhì)。(2)作為研究點(diǎn)到直線的距離最值問題,利用了函數(shù)思想。
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com