| A. | 1 | B. | 2 | C. | 4 | D. | 8 |
分析 取AB的中點N,分別過A、B、N作準線的垂線AP、BQ、MN,垂足分別為P、Q、M,作出圖形,利用拋物線的定義及梯形的中位線性質(zhì)可推導(dǎo),|MN|=$\frac{1}{2}$|AB|,從而可判斷圓與準線的位置關(guān)系:相切,確定拋物線y2=2px的焦點,設(shè)直線AB的方程,與拋物線方程聯(lián)立,由韋達定理可得AB的中點M的縱坐標為$\frac{p}{2}$,由條件即可得到p=4.
解答
解:取AB的中點N,分別過A、B、N作準線的垂線AP、BQ、MN,
垂足分別為P、Q、M,如圖所示:
由拋物線的定義可知,|AP|=|AF|,|BQ|=|BF|,
在直角梯形APQB中,|MN|=$\frac{1}{2}$(|AP|+|BQ|)
=$\frac{1}{2}$(|AF|+|BF|)=$\frac{1}{2}$|AB|,
故圓心N到準線的距離等于半徑,
即有以AB為直徑的圓與拋物線的準線相切,
由M的縱坐標為2,即N的縱坐標為2,
拋物線y2=2px的焦點坐標為($\frac{p}{2}$,0),
設(shè)直線AB的方程為y=2(x-$\frac{p}{2}$),即x=$\frac{1}{2}$y+$\frac{p}{2}$,
與拋物線方程y2=2px聯(lián)立,消去x,得y2-py-p2=0
由韋達定理可得AB的中點N的縱坐標為$\frac{p}{2}$,
即有p=4,
故選C.
點評 本題考查直線與拋物線的位置關(guān)系、直線圓的位置關(guān)系,考查拋物線的定義,考查數(shù)形結(jié)合思想,屬中檔題.
科目:高中數(shù)學(xué) 來源:2017屆河北滄州一中高三上第七周周測數(shù)學(xué)試卷(解析版) 題型:選擇題
設(shè)向量
,若向量
與
平行,則
( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | -$\frac{1}{2}$ | B. | -1 | C. | $\frac{1}{2}$ | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 4$\sqrt{2}$ | B. | 4$\sqrt{3}$ | C. | 2$\sqrt{2}$ | D. | 2$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 充分不必要條件 | B. | 必要不充分條件 | ||
| C. | 充分必要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | 2 | D. | 2$\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | (2,-2) | B. | (-4,0) | C. | (4,0) | D. | (7,3) |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com