如圖,設(shè)AB,CD為⊙O的兩直徑,過(guò)B作PB垂直于AB,并與CD延長(zhǎng)線相交于點(diǎn)P,過(guò)P作直線與⊙O分別交于E,F(xiàn)兩點(diǎn),連結(jié)AE,AF分別與CD交于G、H![]()
(Ⅰ)設(shè)EF中點(diǎn)為
,求證:O、
、B、P四點(diǎn)共圓
(Ⅱ)求證:OG =OH.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓
的離心率為
,且過(guò)點(diǎn)
.
(1)求橢圓的方程;
(2)若過(guò)點(diǎn)C(-1,0)且斜率為
的直線
與橢圓相交于不同的兩點(diǎn)
,試問(wèn)在
軸上是否存在點(diǎn)
,使
是與
無(wú)關(guān)的常數(shù)?若存在,求出點(diǎn)
的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在平面直角坐標(biāo)系
中,已知曲線
上任意一點(diǎn)到點(diǎn)
的距離與到直線
的距離相等.
(Ⅰ)求曲線
的方程;
(Ⅱ)設(shè)
,
是
軸上的兩點(diǎn)
,過(guò)點(diǎn)
分別作
軸的垂線,與曲線
分別交于點(diǎn)
,直線
與x軸交于點(diǎn)
,這樣就稱(chēng)
確定了
.同樣,可由
確定了
.現(xiàn)已知
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在矩形ABCD中,|AB|=2
,|AD|=2,E、F、G、H分別為矩形四條邊的中點(diǎn),以HF、GE所在直線分別為x,y軸建立直角坐標(biāo)系(如圖所示).若R、R′分別在線段0F、CF上,且
.![]()
(Ⅰ)求證:直線ER與GR′的交點(diǎn)P在橢圓
:
+
=1上;
(Ⅱ)若M、N為橢圓
上的兩點(diǎn),且直線GM與直線GN的斜率之積為
,求證:直線MN過(guò)定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知![]()
,曲線
上任意一點(diǎn)
分別與點(diǎn)
、
連線的斜率的乘積為
.
(Ⅰ)求曲線
的方程;
(Ⅱ)設(shè)直線
與
軸、
軸分別交于
、
兩點(diǎn),若曲線
與直線
沒(méi)有公共點(diǎn),求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知
、
分別是橢圓
:
的左、右焦點(diǎn),點(diǎn)
在直線
上,線段
的垂直平分線經(jīng)過(guò)點(diǎn)
.直線
與橢圓
交于不同的兩點(diǎn)
、
,且橢圓
上存在點(diǎn)
,使
,其中
是坐標(biāo)原點(diǎn),
是實(shí)數(shù).
(Ⅰ)求
的取值范圍;
(Ⅱ)當(dāng)
取何值時(shí),
的面積最大?最大面積等于多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知圓C:
的半徑等于橢圓E:
(a>b>0)的短半軸長(zhǎng),橢圓E的右焦點(diǎn)F在圓C內(nèi),且到直線l:y=x-
的距離為
-
,點(diǎn)M是直線l與圓C的公共點(diǎn),設(shè)直線l交橢圓E于不同的兩點(diǎn)A(x1,y1),B(x2,y2).![]()
(Ⅰ)求橢圓E的方程;
(Ⅱ)求證:|AF|-|BF|=|BM|-|AM|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
給定橢圓
:
,稱(chēng)圓心在原點(diǎn)
,半徑為
的圓是橢圓
的“準(zhǔn)圓”.若橢圓
的一個(gè)焦點(diǎn)為
,且其短軸上的一個(gè)端點(diǎn)到
的距離為
.
(Ⅰ)求橢圓
的方程和其“準(zhǔn)圓”方程;
(Ⅱ)點(diǎn)
是橢圓
的“準(zhǔn)圓”上的一個(gè)動(dòng)點(diǎn),過(guò)動(dòng)點(diǎn)
作直線
,使得
與橢圓
都只有一個(gè)交點(diǎn),試判斷
是否垂直,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓
的左右焦點(diǎn)坐標(biāo)分別是
,離心率
,直線
與橢圓
交于不同的兩點(diǎn)
.
(1)求橢圓
的方程;
(2)求弦
的長(zhǎng)度.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com