【題目】某電力部門(mén)需在A、B兩地之間架設(shè)高壓電線(xiàn),因地理?xiàng)l件限制,不能直接測(cè)量A、B兩地距離.現(xiàn)測(cè)量人員在相距
km的C、D兩地(假設(shè)A、B、C、D在同一平面上)測(cè)得∠ACB=75°,∠BCD=45°,∠ADC=30°,∠ADB=45°(如圖),假如考慮到電線(xiàn)的自然下垂和施工損耗等原因,實(shí)際所須電線(xiàn)長(zhǎng)度為A、B距離的
倍,問(wèn)施工單位應(yīng)該準(zhǔn)備多長(zhǎng)的電線(xiàn)? ![]()
【答案】解:在△ACD中,∵∠ADC=30°,∠ACD=75°+45°=120°, ∴∠CAD=30°,∴AC=CD=
,
在△BCD中,∵∠BDC=30°+45°=75°,∠BCD=45°,∴∠CBD=60°,
由正弦定理得:
,
∴BC=
=
=
.
在△ABC中,由余弦定理得:AB2=AC2+BC2﹣2ACBCcos∠ACB
=3+(
)2﹣2
=5,
∴AB=
.
故施工單位應(yīng)該準(zhǔn)備電線(xiàn)長(zhǎng)為
=5km
【解析】在△ACD中求出AC,在△BCD中求出BC,在△ABC中利用余弦定理求出AB.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】近年來(lái),我國(guó)電子商務(wù)蓬勃發(fā)展. 2016年“618”期間,某網(wǎng)購(gòu)平臺(tái)的銷(xiāo)售業(yè)績(jī)高達(dá)516億元人民幣,與此同時(shí),相關(guān)管理部門(mén)推出了針對(duì)該網(wǎng)購(gòu)平臺(tái)的商品和服務(wù)的評(píng)價(jià)系統(tǒng). 從該評(píng)價(jià)系統(tǒng)中選出200次成功交易,并對(duì)其評(píng)價(jià)進(jìn)行統(tǒng)計(jì),網(wǎng)購(gòu)者對(duì)商品的滿(mǎn)意率為0.6,對(duì)服務(wù)的滿(mǎn)意率為0.75,其中對(duì)商品和服務(wù)都滿(mǎn)意的交易為80次.
(Ⅰ) 根據(jù)已知條件完成下面的
列聯(lián)表,并回答能否有99%的把握認(rèn)為“網(wǎng)購(gòu)者對(duì)商品滿(mǎn)意與對(duì)服務(wù)滿(mǎn)意之間有關(guān)系”?
對(duì)服務(wù)滿(mǎn)意 | 對(duì)服務(wù)不滿(mǎn)意 | 合計(jì) | |
對(duì)商品滿(mǎn)意 | 80 | ||
對(duì)商品不滿(mǎn)意 | |||
合計(jì) | 200 |
(Ⅱ) 若將頻率視為概率,某人在該網(wǎng)購(gòu)平臺(tái)上進(jìn)行的3次購(gòu)物中,設(shè)對(duì)商品和服務(wù)都滿(mǎn)意的次數(shù)為隨機(jī)變量
,求
的分布列和數(shù)學(xué)期望
.
附:![]()
(其中
為樣本容量)
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】《九章算術(shù)》中有這樣一則問(wèn)題:“今有良馬與弩馬發(fā)長(zhǎng)安,至齊,齊去長(zhǎng)安三千里,良馬初日行一百九十三里,日增一十三里;弩馬初日行九十七里,日減半里,良馬先至齊,復(fù)還迎弩馬.”則現(xiàn)有如下說(shuō)法:
①弩馬第九日走了九十三里路;
②良馬前五日共走了一千零九十五里路;
③良馬和弩馬相遇時(shí),良馬走了二十一日.
則以上說(shuō)法錯(cuò)誤的個(gè)數(shù)是( )個(gè)
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知c=acosB+bsinA.
(1)求A;
(2)若a=2,b=c,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
的圖象在
處的切線(xiàn)方程為
,其中
是自然對(duì)數(shù)的底數(shù).
(1)若對(duì)任意的
,都有
成立,求實(shí)數(shù)
的取值范圍;
(2)若函數(shù)
的兩個(gè)零點(diǎn)為
,試判斷
的正負(fù),并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐
中,
底面
,底面
是直角梯形,
,
,
,
是
的中點(diǎn).
(1)求證:平面
平面
;
(2)若二面角
的余弦值為
,求直線(xiàn)
與平面
所成角的正弦值.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在某校舉行的航天知識(shí)競(jìng)賽中,參與競(jìng)賽的文科生與理科生人數(shù)之比為
,且成績(jī)分布在
,分?jǐn)?shù)在
以上(含
)的同學(xué)獲獎(jiǎng). 按文理科用分層抽樣的方法抽取
人的成績(jī)作為樣本,得到成績(jī)的頻率分布直方圖(見(jiàn)下圖).
(1)填寫(xiě)下面的
列聯(lián)表,能否有超過(guò)
的把握認(rèn)為“獲獎(jiǎng)與學(xué)生的文理科有關(guān)”?
(2)將上述調(diào)査所得的頻率視為概率,現(xiàn)從參賽學(xué)生中,任意抽取
名學(xué)生,記“獲獎(jiǎng)”學(xué)生人數(shù)為
,求
的分布列及數(shù)學(xué)期望.
文科生 | 理科生 | 合計(jì) | |
獲獎(jiǎng) |
| ||
不獲獎(jiǎng) | |||
合計(jì) |
|
![]()
附表及公式:
,其中![]()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校高三年級(jí)有學(xué)生500人,其中男生300人,女生200人,為了研究學(xué)生的數(shù)學(xué)成績(jī)是否與性別有關(guān),現(xiàn)采用分層抽樣的方法,從中抽取了100名學(xué)生,先統(tǒng)計(jì)了他們期中考試的數(shù)學(xué)分?jǐn)?shù),然后按性別分為男、女兩組,再將兩組學(xué)生的分?jǐn)?shù)分成5組:[100,110),[110,120),[120,130),[130,140),[140,150]分別加以統(tǒng)計(jì),得到如圖所示的頻率分布直方圖.
![]()
(1)從樣本中分?jǐn)?shù)小于110分的學(xué)生中隨機(jī)抽取2人,求兩人恰好為一男一女的概率;
(2)若規(guī)定分?jǐn)?shù)不小于130分的學(xué)生為“數(shù)學(xué)尖子生”,請(qǐng)你根據(jù)已知條件完成2×2列聯(lián)表,并判斷是否有90%的把握認(rèn)為“數(shù)學(xué)尖子生與性別有關(guān)”?
附:
P(K2≥k0) | 0.100 | 0.050 | 0.010 | 0.001 |
k0 | 2.706 | 3.841 | 6.635 | 10.828 |
,
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義在R上的函數(shù)f(x)和g(x),其各自導(dǎo)函數(shù)f′(x)f和g′(x)的圖象如圖所示,則函數(shù)F(x)=f(x)﹣g(x)極值點(diǎn)的情況是( ) ![]()
A.只有三個(gè)極大值點(diǎn),無(wú)極小值點(diǎn)
B.有兩個(gè)極大值點(diǎn),一個(gè)極小值點(diǎn)
C.有一個(gè)極大值點(diǎn),兩個(gè)極小值點(diǎn)
D.無(wú)極大值點(diǎn),只有三個(gè)極小值點(diǎn)
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com