欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

7.已知函數(shù)f(x)=x3+ax2+bx+c(a,b為常數(shù))的圖象過原點(diǎn),且有x=1的切線為y=-$\frac{1}{2}$.
(1)求f(x)的解析式;
(2)求函數(shù)f(x)的單調(diào)遞增區(qū)間.

分析 (1)由題意可得f(0)=0,f(1)=-$\frac{1}{2}$,f′(1)=0,即可求得a,b,c,進(jìn)而得到所求解析式;
(2)求出導(dǎo)數(shù),令導(dǎo)數(shù)大于0,解不等式即可得到增區(qū)間.

解答 解:(1)函數(shù)f(x)=x3+ax2+bx+c(a,b為常數(shù))的圖象過原點(diǎn),
可得f(0)=0,即有c=0,
又導(dǎo)數(shù)為f′(x)=3x2+2ax+b,
在x=1處的切線為y=-$\frac{1}{2}$,則f(1)=-$\frac{1}{2}$,f′(1)=0,
即為1+a+b=-$\frac{1}{2}$,3+2a+b=0,
解得a=-$\frac{3}{2}$,b=0,
即有f(x)=x3-$\frac{3}{2}$x2;
(2)f(x)=x3-$\frac{3}{2}$x2的導(dǎo)數(shù)為f′(x)=3x2-3x,
令導(dǎo)數(shù)f′(x)>0,可得x>1或x<0.
則函數(shù)f(x)的單調(diào)增區(qū)間為(-∞,0),(1,+∞).

點(diǎn)評(píng) 本題考查導(dǎo)數(shù)的運(yùn)用:求切線的斜率和單調(diào)區(qū)間,主要考查導(dǎo)數(shù)的幾何意義,同時(shí)考查二次不等式的解法,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若程序框圖如圖所示,則程序運(yùn)行后輸出的值是(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知在數(shù)列{an}中,a1=1,a2=2,anan+1an+2=an+an+1+an+2,且an+1an+2≠1,求{an}的前2005項(xiàng)和S2005

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.求過點(diǎn)P(-2,1)且與直線l:4x-3y+5=0垂直的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在Rt△ABC內(nèi)有一內(nèi)接正方形,它的一條邊在斜邊BC上,設(shè)AB=a,∠ABC=θ,△ABC的面積為P,正方形面積為Q.求$\frac{P}{Q}$的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在平面直角坐標(biāo)系xOy中,已知?jiǎng)狱c(diǎn)P到兩個(gè)定點(diǎn)F1(-$\sqrt{2}$,0),F(xiàn)2($\sqrt{2}$,0)的距離的和為定值4.
(1)求點(diǎn)P運(yùn)動(dòng)所成軌跡C的方程;
(2)設(shè)O為坐標(biāo)原點(diǎn),若點(diǎn)A在軌跡C上,點(diǎn)B在直線y=2上,且OA⊥OB,試判斷直線AB與圓x2+y2=2的位置關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=(2x-4a)lnx+x,a>0
(Ⅰ)求函數(shù)g(x)=xf(x)的單調(diào)區(qū)間;
(Ⅱ)若?x∈[1,+∞),不等式f(x)>0恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.在平面直角坐標(biāo)系xOy中,橢圓$\frac{x{\;}^{2}}{a{\;}^{2}}$+$\frac{y{\;}^{2}}{b{\;}^{2}}$=1(a>b>0)內(nèi)接四邊形ABCD(點(diǎn)A、B、C、D在橢圓上)的對(duì)角線AC、BD相交于P($\frac{1}{b{\;}^{2}}$,$\frac{1}{a{\;}^{2}}$),且$\overrightarrow{AP}$=λ$\overrightarrow{PC}$,$\overrightarrow{BP}$=λ$\overrightarrow{PD}$,則直線AB的斜率為( 。
A.$\frac{-a{\;}^{2}-c{\;}^{2}}{c{\;}^{2}}$B.$\frac{c(λ-1)}{a}$C.-1D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,平行四邊形OADB的對(duì)角線OD、AB相交于點(diǎn)C,線段BC上有一點(diǎn)M滿足BC=3BM,線段CD上有一點(diǎn)N滿足CD=3CN,設(shè)|$\overrightarrow{OA}$|=2,|$\overrightarrow{OB}$|=6,∠AOB=60°.
(1)用向量$\overrightarrow{OA}$,$\overrightarrow{OB}$表示向量$\overrightarrow{MN}$;
(2)求線段MN的長.

查看答案和解析>>

同步練習(xí)冊(cè)答案