分析 連接BD,證明△PCD∽△PDB,求出PC,即可求出BC.
解答
解:如圖所示,連接BD,則
∵AB為⊙O的直徑,
∴OA=OB=OD=$\frac{1}{2}$AB=1,
∵PB是⊙O的切線,
∴AB⊥PB,∠A=∠PBD,
∴OP=$\sqrt{P{B}^{2}+O{B}^{2}}$=3,
∴PD=OP-OD=2,
∵OA=OD,
∴∠A=∠2=∠1,
∴∠1=∠PBD,
∵∠P=∠P,
∴△PCD∽△PDB,
∴$\frac{PD}{PB}=\frac{PC}{PD}$,
∴PC=$\frac{P{D}^{2}}{PB}$=$\sqrt{2}$,
∴BC=PB-PC=$\sqrt{2}$.
故答案為:$\sqrt{2}$.
點評 本題考查與圓有關(guān)的比例線段,考查三角形相似的證明,比較基礎(chǔ).
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $({\frac{1}{5},\frac{1}{3}})$ | B. | $({\frac{1}{4},\frac{1}{2}})$ | C. | (2,4) | D. | (3,5) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | -1 | B. | $-\frac{1}{2}$ | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com