【題目】如圖,在三棱錐
中,
平面
,
為棱
上的一點(diǎn),且
平面
.
![]()
(1)證明:
;
(2)設(shè)
.
與平面
所成的角為
.求二面角
的大小.
【答案】(1)見解析(2)
.
【解析】
(1)根據(jù)線面垂直性質(zhì),以及線面垂直的判定定理,先得到
平面
,進(jìn)而可得
;
(2)先由題意,得到
,求得
,以
為坐標(biāo)原點(diǎn),
方向?yàn)?/span>
軸正方向,
方向?yàn)?/span>
軸正方向,建立空間直角坐標(biāo)系
,求出兩平面
和
的法向量,根據(jù)向量夾角公式,即可求出結(jié)果.
(1)證明:因?yàn)?/span>
平面
,
平面
,
所以
.
因?yàn)?/span>
平面
,
平面
,
所以
.
因?yàn)?/span>
,所以
平面![]()
因?yàn)?/span>
平面
,所以
.
(2)解:因?yàn)?/span>
平面
,
即為
與平面
所成的角,
所以
,所以
,
以
為坐標(biāo)原點(diǎn),
方向?yàn)?/span>
軸正方向,
方向?yàn)?/span>
軸正方向,建立空間直角坐標(biāo)系![]()
則![]()
![]()
![]()
設(shè)平面
的一個(gè)法向量為
,
平面
的一個(gè)法向量為![]()
則
,![]()
即
,
,
令
可得![]()
所以![]()
由圖知,二面角
的平面角為銳角,所以二面角
的大小為
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱柱
中,底面
是正方形,且
,
.
![]()
(1)求證:
;
(2)若動(dòng)點(diǎn)
在棱
上,試確定點(diǎn)
的位置,使得直線
與平面
所成角的正弦值為
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校高三男生體育課上做投籃球游戲,兩人一組,每輪游戲中,每小組兩人每人投籃兩次,投籃投進(jìn)的次數(shù)之和不少于
次稱為“優(yōu)秀小組”.小明與小亮同一小組,小明、小亮投籃投進(jìn)的概率分別為
.
(1)若
,
,則在第一輪游戲他們獲“優(yōu)秀小組”的概率;
(2)若
則游戲中小明小亮小組要想獲得“優(yōu)秀小組”次數(shù)為
次,則理論上至少要進(jìn)行多少輪游戲才行?并求此時(shí)
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】祖暅原理指出:兩個(gè)等高的幾何體若在所有等高處的水平截面的面積相等,則這兩個(gè)幾何體的體積相等,例如在計(jì)算球的體積時(shí),構(gòu)造一個(gè)底面半徑和高都與球的半徑相等的圓柱,與半球(如圖①)放置在同一平面上,然后在圓柱內(nèi)挖去一個(gè)以圓柱下底面圓心為頂點(diǎn),圓柱上底面為底面的圓錐后得到一新幾何體(如圖②),用任何一個(gè)平行于底面的平面去截它們時(shí),可證得所截得的兩個(gè)截面面積相等,由此可證明新幾何體與半球體積相等.現(xiàn)將橢圓
所圍成的平面圖形繞y軸旋轉(zhuǎn)一周后得一橄欖狀的幾何體,類比上述方法,運(yùn)用祖暅原理可求得其體積等于( )
![]()
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】地球的公轉(zhuǎn)軌道可以看作是以太陽為一個(gè)焦點(diǎn)的橢圓,根據(jù)開普勒行星運(yùn)動(dòng)第二定律,可知太陽和地球的連線在相等的時(shí)間內(nèi)掃過相等的面積,某同學(xué)結(jié)合物理和地理知識(shí)得到以下結(jié)論:①地球到太陽的距離取得最小值和最大值時(shí),地球分別位于圖中
點(diǎn)和
點(diǎn);②已知地球公轉(zhuǎn)軌道的長半軸長約為
千米,短半軸長約為
千米,則該橢圓的離心率約為
.因此該橢圓近似于圓形:③已知我國每逢春分(
月
日前后)和秋分(
月
日前后),地球會(huì)分別運(yùn)行至圖中
點(diǎn)和
點(diǎn),則由此可知我國每年的夏半年(春分至秋分)比冬半年(當(dāng)年秋分至次年春分)要少幾天.以上結(jié)論正確的是( )
![]()
A.①B.①②C.②③D.①③
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2020年,新型冠狀病毒引發(fā)的疫情牽動(dòng)著億萬人的心,八方馳援戰(zhàn)疫情,眾志成城克時(shí)難,社會(huì)各界支援湖北共抗新型冠狀病毒肺炎,重慶某醫(yī)院派出3名醫(yī)生,2名護(hù)士支援湖北,現(xiàn)從這5人中任選2人定點(diǎn)支援湖北某醫(yī)院,則恰有1名醫(yī)生和1名護(hù)士被選中的概率為( )
A.0.7B.0.4C.0.6D.0.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著社會(huì)經(jīng)濟(jì)高速發(fā)展,人民的生活水平越來越高,部分學(xué)校安裝了中央空調(diào),某校數(shù)學(xué)建模隊(duì)調(diào)查了某品牌中央空調(diào),得到該設(shè)備使用年限x(單位:年)和維修總費(fèi)用y(單位:萬元)的統(tǒng)計(jì)表如下:(每年年底維修保養(yǎng))
使用年限x(單位:年) | 2 | 3 | 4 | 5 | 6 |
維修總費(fèi)用y(單位:萬元) | 1 |
| 3 | 4 |
|
由上表可得線性回歸方程
,則根據(jù)此模型預(yù)報(bào)該品牌中央空調(diào)第8年年底的維修費(fèi)用約為( )
A.
萬元B.
萬元C.
萬元D.
萬元
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:
(a>b>0)的左右焦點(diǎn)分別為F1,F2點(diǎn).M為橢圓上的一動(dòng)點(diǎn),△MF1F2面積的最大值為4.過點(diǎn)F2的直線l被橢圓截得的線段為PQ,當(dāng)l⊥x軸時(shí),
.
(1)求橢圓C的方程;
(2)過點(diǎn)F1作與x軸不重合的直線l,l與橢圓交于A,B兩點(diǎn),點(diǎn)A在直線
上的投影N與點(diǎn)B的連線交x軸于D點(diǎn),D點(diǎn)的橫坐標(biāo)x0是否為定值?若是,求出定值;若不是,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
:
的右焦點(diǎn)為
,且點(diǎn)
在橢圓
上.
⑴求橢圓
的標(biāo)準(zhǔn)方程;
⑵已知?jiǎng)又本
過點(diǎn)
且與橢圓
交于
兩點(diǎn).試問
軸上是否存在定點(diǎn)
,使得
恒成立?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com