【題目】若存在正數(shù)x,y,使得
,其中e為自然對(duì)數(shù)的底數(shù),則實(shí)數(shù)
的取值范圍是_____________.
【答案】(
,0)
[
,
)
【解析】
根據(jù)函數(shù)與方程的關(guān)系將方程進(jìn)行轉(zhuǎn)化,利用換元法轉(zhuǎn)化為方程有解,構(gòu)造函數(shù)求函數(shù)的導(dǎo)數(shù),利用函數(shù)極值和單調(diào)性的關(guān)系進(jìn)行求解即可.
由
得x+s(y﹣2ex)ln
=0,
即1+s(
﹣2e)ln
=0,
即設(shè)t=
,則t>0,
則條件等價(jià)為1+s(t﹣2e)lnt=0,
即(t﹣2e)lnt=
有解,
設(shè)g(t)=(t﹣2e)lnt,
g′(t)=lnt+1﹣
為增函數(shù),
∵g′(e)=lne+1﹣
=1+1﹣2=0,
∴當(dāng)t>e時(shí),g′(t)>0,
當(dāng)0<t<e時(shí),g′(t)<0,
即當(dāng)t=e時(shí),函數(shù)g(t)取得極小值,為g(e)=(e﹣2e)lne=﹣e,
即g(t)≥g(e)=﹣e,
若(t﹣2e)lnt=
有解,
則
≥﹣e,即
≤e,
則s<0或s≥
,
故答案為:s<0或s≥
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在P地正西方向8km的A處和正東方向1km的B處各有一條正北方向的公路AC和BD,現(xiàn)計(jì)劃在AC和BD路邊各修建一個(gè)物流中心E和F,為緩解交通壓力,決定修建兩條互相垂直的公路PE和PF,設(shè)![]()
![]()
Ⅰ
為減少對(duì)周邊區(qū)域的影響,試確定E,F的位置,使
與
的面積之和最;
Ⅱ
為節(jié)省建設(shè)成本,求使
的值最小時(shí)AE和BF的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC的內(nèi)角A,B,C的對(duì)邊分別為
,已知
且
.
![]()
(1)求角
;
(2)如圖,D為△ABC外一點(diǎn),若在平面四邊形ABCD中,
,求△ACD面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知曲線M:
的左、右頂點(diǎn)分別為A,B,設(shè)P是曲線M上的任意一點(diǎn).
(1)當(dāng)P異于A,B時(shí),記直線PA、PB的斜率分別為
、
則
是否為定值,請(qǐng)說(shuō)明理由.
(2)已知點(diǎn)C在曲線M長(zhǎng)軸上(異于A、B兩點(diǎn)),且
的最大值為7,求點(diǎn)C的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】記
(
,
).
(1)求函數(shù)
的零點(diǎn);
(2)設(shè)
、
、
均為正整數(shù),且
為最簡(jiǎn)根式,若存在
,使得
可唯一表示為
的形式(
),求證:
;
(3)已知
,是否存在
,使得![]()
成立,若存在,試求出
的值,若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了預(yù)防流感,某學(xué)校對(duì)教室用藥熏消毒法進(jìn)行消毒.已知藥物釋放過(guò)程中,室內(nèi)每立方米空氣的含藥量
(毫克)與時(shí)間
(小時(shí))成正比.藥物釋放完畢后,
與
的函數(shù)關(guān)系式為
(
為常數(shù)),如圖所示,根據(jù)圖中提供的信息,回答下列問(wèn)題:
![]()
(1)求從藥物釋放開(kāi)始,每立方米空氣中的含藥量
(毫克)與時(shí)間
(小時(shí))之間的函數(shù)關(guān)系式;
(2)據(jù)測(cè)定,當(dāng)空氣中每立方米空氣的含藥量降到0.25毫克以下時(shí),學(xué)生方可進(jìn)教室,那從藥物釋放開(kāi)始,至少需要經(jīng)過(guò)多少小時(shí)后,學(xué)生才能回到進(jìn)教室?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,圓O:
與坐標(biāo)軸分別交于A1,A2,B1,B2(如圖).
(1)點(diǎn)Q是圓O上除A1,A2外的任意點(diǎn)(如圖1),直線A1Q,A2Q與直線
交于不同的兩點(diǎn)M,N,求線段MN長(zhǎng)的最小值;
(2)點(diǎn)P是圓O上除A1,A2,B1,B2外的任意點(diǎn)(如圖2),直線B2P交x軸于點(diǎn)F,直線A1B2交A2P于點(diǎn)E.設(shè)A2P的斜率為k,EF的斜率為m,求證:2m﹣k為定值.
![]()
(圖1) (圖2)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:如果數(shù)列
的任意連續(xù)三項(xiàng)均能構(gòu)成一個(gè)三角形的三邊長(zhǎng),則稱
為三角形”數(shù)列對(duì)于“三角形”數(shù)列
,如果函數(shù)
使得
仍為一個(gè)三角形”數(shù)列,則稱
是數(shù)列
的“保三角形函數(shù)”
.
(1)已知
是首項(xiàng)為2,公差為1的等差數(shù)列,若
,
是數(shù)列
的保三角形函數(shù)”,求
的取值范圍;
(2)已知數(shù)列
的首項(xiàng)為2019,
是數(shù)列
的前
項(xiàng)和,且滿足
,證明
是“三角形”數(shù)列;
(3)求證:函數(shù)
,
是數(shù)列1,
,
的“保三角形函數(shù)”的充要條件是
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知
,直線
的方程為
,直線
的方程為
.當(dāng)m變化時(shí),
(1)分別求直線
和
經(jīng)過(guò)的定點(diǎn)坐標(biāo);
(2)討論直線
和
的位置關(guān)系.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com