欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

18.已知向量$\overrightarrow{a}$=m$\overrightarrow{i}$+5$\overrightarrow{j}$-$\overrightarrow{k}$,$\overrightarrow$=3$\overrightarrow{i}$+$\overrightarrow{j}$+r$\overrightarrow{k}$若$\overrightarrow{a}$∥$\overrightarrow$則實(shí)數(shù)m=15,r=-$\frac{1}{5}$.

分析 由$\overrightarrow{a}$∥$\overrightarrow$得出坐標(biāo)對(duì)應(yīng)成比例,分別求出實(shí)數(shù)m和r即可

解答 解:向量$\overrightarrow{a}$=m$\overrightarrow{i}$+5$\overrightarrow{j}$-$\overrightarrow{k}$=(m,5,-1),$\overrightarrow$=3$\overrightarrow{i}$+$\overrightarrow{j}$+r$\overrightarrow{k}$=(3,1,r),$\overrightarrow{a}$∥$\overrightarrow$,
則$\frac{m}{3}$=$\frac{5}{1}$=$\frac{-1}{r}$
解得m=15,r=-$\overline{5}$
故答案為:15,-$\frac{1}{5}$

點(diǎn)評(píng) 本題考點(diǎn)是空間共線向量的坐標(biāo)表示,考查了空間共線向量等價(jià)條件的簡單應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知全集U=R,集合A={1,2,3,4,5},B={x∈R|x>2},下圖中陰影部分所表示的集合為( 。
A.{1}B.{0,1}C.{1,2}D.{0,1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.函數(shù)$y=2cos(\frac{π}{4}-2x)$的單調(diào)減區(qū)間是( 。
A.$\{x|kπ+\frac{π}{8}≤x≤kπ+\frac{5π}{8},k∈Z\}$B.{x|kπ-$\frac{3π}{8}$≤x≤kπ+$\frac{π}{8}$,k∈Z}
C.{x|2kπ+$\frac{π}{8}$≤x≤2kπ+$\frac{5π}{8}$,k∈Z}D.{x|2kπ-$\frac{3π}{8}$≤x≤2kπ+$\frac{π}{8}$,k∈Z}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.復(fù)數(shù)z=4i2016-$\frac{5i}{1+2i}$(其中i為虛數(shù)單位)對(duì)應(yīng)點(diǎn)在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知f(x)=|lnx|,設(shè)0<a<b,且f(a)=f(b),則a+2b的取值范圍是( 。
A.[3,+∞)B.(3,+∞)C.$[2\sqrt{2},+∞)$D.$(2\sqrt{2},+∞)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知橢圓C的兩焦點(diǎn)分別為F1(-2$\sqrt{2}$,0),F(xiàn)2(2$\sqrt{2}$,0),長軸長為6.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)已知過點(diǎn)(0,2)且斜率為1的直線交橢圓C與A、B兩點(diǎn),求線段AB的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>b>0)的漸近線和圓x2+y2-6y+8=0相切,則該雙曲線的離心率等于(  )
A.$\sqrt{2}$B.2C.3D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.給出下列命題:
①命題“同位角相等,兩直線平行”的否命題為:“同位角不相等,兩直線不平行,”.
②“x≠1”是“x2-4x+3≠0”的必要不充分條件.
③“p或q是假命題”是“¬p為真命題”的充分不必要條件.
④對(duì)于命題p:?x∈R,使得x2+2x+2≤0,則¬p:x∉R均有x2+2x+2>0
其中真命題的序號(hào)為①②③(把所有正確命題的序號(hào)都填在橫線上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.設(shè)-$\sqrt{2}$≤a≤$\sqrt{2}$,b≠0,a,b∈R,則(a-b)2+($\sqrt{2-{a}^{2}}$-$\frac{9}$)2的最小值為8.

查看答案和解析>>

同步練習(xí)冊(cè)答案