(本題滿分14分)已知圓
,圓
,動(dòng)點(diǎn)
到圓
,
上點(diǎn)的距離的最小值相等.
(1)求點(diǎn)
的軌跡方程;
(2)點(diǎn)
的軌跡上是否存在點(diǎn)
,使得點(diǎn)
到點(diǎn)
的距離減去點(diǎn)
到點(diǎn)
的距離的差為
,如果存在求出
點(diǎn)坐標(biāo),如果不存在說(shuō)明理由.
(1)點(diǎn)
的軌跡方程是
.(2)點(diǎn)
的軌跡上不存在滿足條件的點(diǎn)
.
【解析】本試題主要是考查了動(dòng)點(diǎn)的軌跡方程的求解,以及滿足動(dòng)點(diǎn)到定點(diǎn)的距離差為定值的點(diǎn)是否存在的探索性問(wèn)題的運(yùn)用。
((1)根據(jù)已知設(shè)出點(diǎn)的坐標(biāo),因?yàn)辄c(diǎn)到圓上點(diǎn)的距離的最小值相等,所以可知點(diǎn)到圓心的距離相等,因此得到軌跡方程。
(2)假設(shè)存在點(diǎn)滿足題意可知,得到關(guān)于x,y的方程,然后利用方程有無(wú)解來(lái)判定是否存在的問(wèn)題。
解:(1)設(shè)動(dòng)點(diǎn)
的坐標(biāo)為
,
圓
的圓心
坐標(biāo)為
,圓
的圓心
坐標(biāo)為
,
因?yàn)閯?dòng)點(diǎn)
到圓
,
上的點(diǎn)距離最小值相等,所以
,
即
,化簡(jiǎn)得
,
因此點(diǎn)
的軌跡方程是
.
(2)假設(shè)這樣的
點(diǎn)存在,設(shè)點(diǎn)![]()
因?yàn)?img
src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012082413565119143355/SYS201208241357216250282246_DA.files/image003.png">點(diǎn)到
點(diǎn)的距離減去
點(diǎn)到
點(diǎn)的距離的差為4,
所以
,
,
又
點(diǎn)在直線
上,
點(diǎn)的坐標(biāo)是方程組
的解,
消元得
,
,方程組無(wú)解,
所以點(diǎn)
的軌跡上不存在滿足條件的點(diǎn)
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本題滿分14分)已知向量
,
,函數(shù)
. (Ⅰ)求
的單調(diào)增區(qū)間; (II)若在
中,角
所對(duì)的邊分別是
,且滿足:
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本題滿分14分)已知
,且以下命題都為真命題:
命題
實(shí)系數(shù)一元二次方程
的兩根都是虛數(shù);
命題
存在復(fù)數(shù)
同時(shí)滿足
且
.
求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年吉林省高三第一次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分14分)已知函數(shù)![]()
(1)若
,求x的值;
(2)若
對(duì)于
恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年廣東省惠州市高三第三次調(diào)研考試數(shù)學(xué)理卷 題型:解答題
(本題滿分14分)
已知橢圓
:
的離心率為
,過(guò)坐標(biāo)原點(diǎn)
且斜率為
的直線
與
相交于
、
,
.
⑴求
、
的值;
⑵若動(dòng)圓
與橢圓
和直線
都沒(méi)有公共點(diǎn),試求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年廣東省惠州市高三第三次調(diào)研考試數(shù)學(xué)理卷 題型:解答題
((本題滿分14分)
已知梯形ABCD中,AD∥BC,∠ABC =∠BAD =
,AB=BC=2AD=4,E、F分別是AB、CD上的點(diǎn),EF∥BC,AE = x,G是BC的中點(diǎn).沿EF將梯形ABCD翻折,使平面AEFD⊥平面EBCF
(如圖).
(1)當(dāng)x=2時(shí),求證:BD⊥EG ;
(2)若以F、B、C、D為頂點(diǎn)的三棱錐的體積記為
,
求
的最大值;
![]()
![]()
(3)當(dāng)
取得最大值時(shí),求二面角D-BF-C的余弦值.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com