(本題滿分12分)
設(shè)二次函數(shù)
,對任意實(shí)數(shù)
,有
恒成立;數(shù)列
滿足
.
(1)求函數(shù)
的解析式;
(2)試寫出一個(gè)區(qū)間
,使得當(dāng)
時(shí),
且數(shù)列
是遞增數(shù)列,并說明理由;
(3)已知
,是否存在非零整數(shù)
,使得對任意
,都有
![]()
恒成立,若存在,求之;若不存在,說明理由.
解:(1)由
恒成立等價(jià)于
恒成立
……1分
從而得:
,化簡得
,從而得
,
所以
,
………3分
(2)解:若數(shù)列
是遞增數(shù)列,則
即:
![]()
………5分[ZXX又當(dāng)
時(shí),
,
所以有
且
,所以數(shù)列
是遞增數(shù)列。 …………7分
注:本題的區(qū)間也可以是
、
、
、………,等無窮多個(gè).
(3)由(2)知
,從而
;
,
即
;
………8分
令
,則有
且
;
從而有
,可得
,所以數(shù)列
是
為首項(xiàng),公比為
的等比數(shù)列,
從而得
,即
,
所以
,
……………………10分
所以
,所以
,
所以,![]()
.………………………11分
即![]()
![]()
,所以,
恒成立
(1) 當(dāng)
為奇數(shù)時(shí),即
恒成立,當(dāng)且僅當(dāng)
時(shí),
有最小值
為。![]()
(2) 當(dāng)
為偶數(shù)時(shí),即
恒成立,當(dāng)且僅當(dāng)
時(shí),有最大值
為。![]()
所以,對任意
,有
。又
非零整數(shù),
…………………12分
【解析】略
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
| π | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分12分)已知數(shù)列
是首項(xiàng)為
,公比
的等比數(shù)列,,
設(shè)
,數(shù)列
.
(1)求數(shù)列
的通項(xiàng)公式;(2)求數(shù)列
的前n項(xiàng)和Sn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年上海市金山區(qū)高三上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分12分,第1小題6分,第2小題6分)
已知集合A={x| | x–a | < 2,xÎR
},B={x|
<1,xÎR }.
(1) 求A、B;
(2) 若
,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年安徽省高三10月月考理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分12分)
設(shè)函數(shù)
(
,
為常數(shù)),且方程
有兩個(gè)實(shí)根為
.
(1)求
的解析式;
(2)證明:曲線
的圖像是一個(gè)中心對稱圖形,并求其對稱中心.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年重慶市高三第二次月考文科數(shù)學(xué) 題型:解答題
(本題滿分12分,(Ⅰ)小問4分,(Ⅱ)小問6分,(Ⅲ)小問2分.)
如圖所示,直二面角
中,四邊形
是邊長為
的正方形,
,
為
上的點(diǎn),且
⊥平面![]()
(Ⅰ)求證:
⊥平面![]()
(Ⅱ)求二面角
的大;
(Ⅲ)求點(diǎn)
到平面
的距離.
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com