如圖,四棱柱ABCD
A1B1C1D1的底面ABCD是正方形,O是底面中心,A1O⊥底面ABCD,AB=AA1=
.![]()
(1)證明:平面A1BD∥平面CD1B1;
(2)求三棱柱ABD
A1B1D1的體積.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在四棱錐
中,底面
為矩形,
.
(1)求證
,并指出異面直線PA與CD所成角的大;
(2)在棱
上是否存在一點(diǎn)
,使得
?如果存在,求出此時(shí)三棱錐
與四棱錐
的體積比;如果不存在,請說明理由.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,四棱錐P-ABCD的底面是矩形,側(cè)面PAD丄底面ABCD,.
.![]()
(1)求證:平面PAB丄平面PCD
(2)如果AB=BC=2,PB=PC=
求四棱錐P-ABCD的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知多面體
中, 四邊形
為矩形,
,
,平面
平面
,
、
分別為
、
的中點(diǎn),且
,
.![]()
(1)求證:
平面
;
(2)求證:
平面
;
(3)設(shè)平面
將幾何體
分成的兩個錐體的體積分別為
,
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在四棱錐P-ABCD中,平面PAD⊥平面ABCD,AB∥DC,△PAD是等邊三角形,已知AD=4,BD=4
,AB=2CD=8.![]()
(1)設(shè)M是PC上的一點(diǎn),證明:平面MBD⊥平面PAD;
(2)當(dāng)M點(diǎn)位于線段PC什么位置時(shí),PA∥平面MBD?
(3)求四棱錐P-ABCD的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在體積為
的圓錐
中,已知
的直徑
,
是
的中點(diǎn),
是弦
的中點(diǎn).![]()
(1)指出二面角
的平面角,并求出它的大;
(2)求異面直線
與
所成的角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在四棱錐
中,
底面
,底面
是平行四邊形,
,
是
的中點(diǎn)。![]()
(1)求證:
;
(2)求證:
;
(3)若
,求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,圓錐的軸截面為等腰直角
,
為底面圓周上一點(diǎn).![]()
(1)若
的中點(diǎn)為
,
,
求證:
平面
;
(2)如果
,
,求此圓錐的全面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
用一個平行于圓錐底面的平面截這個圓錐,截得圓臺上、下底面的面積之比為1∶16,截去的圓錐的母線長是3cm,求圓臺的母線長.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com