解:(1)
令f′(x)>0得x∈(1,e);f′(x)<0得x∈(0,1);
∴f′(x)在(0,1]上單減,在[1,e)上單增;
x∈[e,+∞)時(shí),
對x∈[e,+∞)恒成立
∴f(x)在[e,+∞)單調(diào)遞增,故f(x)min=f(1)=3
(2)![]()
![]()
令![]()
![]()
因?yàn)?IMG style="WIDTH: 32px; HEIGHT: 12px; VERTICAL-ALIGN: middle" src="http://thumb.zyjl.cn/pic1/upload/papers/g02/20121006/20121006184815943641.png">,顯然
,
所以
在
上遞增,顯然有
恒成立.(當(dāng)且僅當(dāng)x=1時(shí)等號成立),即證.
(3)當(dāng)
時(shí),
,
,
假設(shè)函數(shù)f(x)存在“中值伴侶切線”.
設(shè)
,
是曲線y=f(x)上的不同兩點(diǎn),且
,
則
,
.
故直線AB的斜率:![]()
曲線在點(diǎn)
處的切線斜率:![]()
![]()
![]()
依題意得: ![]()
![]()
化簡可得: ![]()
,
即
=![]()
.
設(shè)
(
),上式化為
,
由(2)知
時(shí),
恒成立.
所以在
內(nèi)不存在t,使得
成立.
綜上所述,假設(shè)不成立.
所以,函數(shù)f(x)不存在“中值伴侶切線”
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年山東省青島市高三3月統(tǒng)一質(zhì)量檢測考試(第二套)理科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù)
.
(1)求
的最小值;
(2)當(dāng)函數(shù)自變量的取值區(qū)間與對應(yīng)函數(shù)值的取值區(qū)間相同時(shí),這樣的區(qū)間稱為函數(shù)的保值區(qū)間.設(shè)
,試問函數(shù)
在
上是否存在保值區(qū)間?若存在,請求出一個保值區(qū)間;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆湖南省高一12月月考數(shù)學(xué) 題型:解答題
(本題滿分14分)定義在D上的函數(shù)
,如果滿足;對任意
,存在常數(shù)
,都有
成立,則稱
是D上的有界函數(shù),其中M稱為函數(shù)
的上界。
已知函數(shù)
,![]()
(1)當(dāng)
時(shí),求函數(shù)
在
上的值域,并判斷函數(shù)
在
上是否為有界函數(shù),請說明理由;
(2)若函數(shù)
在
上是以3為上界函數(shù)值,求實(shí)數(shù)
的取值范圍;
(3)若
,求函數(shù)
在
上的上界T的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省徐州市銅山縣棠張中學(xué)高三(上)周練數(shù)學(xué)試卷(理科)(11.3)(解析版) 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com