【題目】選修4-4:坐標(biāo)系與參數(shù)方程
極坐標(biāo)系與直角坐標(biāo)系
有相同的長度單位,以坐標(biāo)原點(diǎn)
為極點(diǎn),以
軸正半軸為極軸.已知曲線
的極坐標(biāo)方程為
,曲線
的極坐標(biāo)方程為
,射線
與曲線
分別交異于極點(diǎn)
的四點(diǎn)
.
(1)若曲線
關(guān)于曲線
對稱,求
的值,并把曲線
和
化成直角坐標(biāo)方程;
(2)求
的值.
【答案】(1)
,
,
.
(2)
.
【解析】
(1)曲線C1的極坐標(biāo)方程為ρ=2
sin(θ+
),展開可得:
,把ρ2=x2+y2,x=ρcosθ,y=ρsinθ代入可得直角坐標(biāo)方程.把C2的方程化為直角坐標(biāo)方程為y=a,根據(jù)曲線C1關(guān)于曲線C2對稱,故直線y=a經(jīng)過圓心解得a,即可得出.
(2)由題意可得,|OA|,|OB|,|OC|,|OD|,代入利用和差公式即可得出.
(1)
,
化為直角坐標(biāo)方程為
.
把
的方程化為直角坐標(biāo)方程為
,因為曲線
關(guān)于曲線
對稱,故直線
經(jīng)過圓心
,
解得
,故
的直角坐標(biāo)方程為
.
(2)由題意可得,
,
,
,
,
所以
.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線
的參數(shù)方程為
,以原點(diǎn)
為極點(diǎn),以
軸的非負(fù)半軸為極軸建立極坐標(biāo)系,直線
的極坐標(biāo)方程為
.
(1)寫出曲線
的極坐標(biāo)方程和直線
的直角坐標(biāo)方程;
(2)若射線
與曲線
交于
兩點(diǎn),與直線
交于
點(diǎn),射線
與曲線
交于
兩點(diǎn),求
的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為普及學(xué)生安全逃生知識與安全防護(hù)能力,某學(xué)校高一年級舉辦了安全知識與安全逃生能力競賽,該競賽分為預(yù)賽和決賽兩個階段,預(yù)賽為筆試,決賽為技能比賽,現(xiàn)將所有參賽選手參加筆試的成績(得分均為整數(shù),滿分為
分)進(jìn)行統(tǒng)計,制成如下頻率分布表.
分?jǐn)?shù)(分?jǐn)?shù)段) | 頻數(shù)(人數(shù)) | 頻率 |
|
|
|
|
|
|
|
|
|
|
|
|
合計 |
|
|
(1)求表中
,
,
,
,
的值;
(2)按規(guī)定,預(yù)賽成績不低于
分的選手參加決賽.已知高一(2)班有甲、乙兩名同學(xué)取得決賽資格,記高一(2)班在決賽中進(jìn)入前三名的人數(shù)為
,求
的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)若
,求函數(shù)
的單調(diào)區(qū)間;
(2)若
,則當(dāng)
時,函數(shù)
的圖象是否總在直線
上方?請寫出判斷過程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,![]()
(1)求證
在
上遞增;
(2)若
在
上的值域是
,求實數(shù)a的取值范圍;
(3)當(dāng)
在
上恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某人經(jīng)營一個抽獎游戲,顧客花費(fèi)
元錢可購買一次游戲機(jī)會,每次游戲中,顧客從裝有
個黑球,
個紅球,
個白球的不透明袋子中依次不放回地摸出
個球(除顏色外其他都相同),根據(jù)摸出的球的顏色情況進(jìn)行兌獎.顧客獲得一等獎、二等獎、三等獎、四等獎時分別可領(lǐng)取獎金
元,
元、
元、
元.若經(jīng)營者將顧客摸出的
個球的顏色情況分成以下類別:
:
個黑球,
個紅球;
:
個紅球;
:恰有
個白球;
:恰有
個白球;
:
個白球,且經(jīng)營者計劃將五種類別按照發(fā)生機(jī)會從小到大的順序分別對應(yīng)中一等獎、中二等獎、中三等獎、中四等獎、不中獎五個層次.
(1)請寫出一至四等獎分別對應(yīng)的類別(寫出字母即可);
(2)若經(jīng)營者不打算在這個游戲的經(jīng)營中虧本,求
的最大值;
(3)若
,當(dāng)顧客摸出的第一個球是紅球時,求他領(lǐng)取的獎金的平均值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)
,且
為
的極值點(diǎn).
(Ⅰ) 若
為
的極大值點(diǎn),求
的單調(diào)區(qū)間(用
表示);
(Ⅱ)若
恰有1解,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若數(shù)列
滿足:存在正整數(shù)
,對任意的
,使得
成立,則稱
為
階穩(wěn)增數(shù)列.
(1)若由正整數(shù)構(gòu)成的數(shù)列
為
階穩(wěn)增數(shù)列,且對任意
,數(shù)列
中恰有
個
,求
的值;
(2)設(shè)等比數(shù)列
為
階穩(wěn)增數(shù)列且首項大于
,試求該數(shù)列公比
的取值范圍;
(3)在(1)的條件下,令數(shù)列
(其中
,常數(shù)
為正實數(shù)),設(shè)
為數(shù)列
的前
項和.若已知數(shù)列
極限存在,試求實數(shù)
的取值范圍,并求出該極限值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com