分析 直接利用分析法的證明步驟,結(jié)合函數(shù)的單調(diào)性證明即可.
解答 證明:∵ba>0,ab>0,
∴要證:ba>ab
只要證:alnb>blna
只要證$\frac{lnb}>\frac{lna}{a}$.(∵a>b>e)
取函數(shù)$f(\begin{array}{l}x\end{array})=\frac{lnx}{x}$,∵$f'(\begin{array}{l}x\end{array})=\frac{1-lnx}{x^2}$
∴當x>e時,$f'(\begin{array}{l}x\end{array})<0$,∴函數(shù)$f(\begin{array}{l}x\end{array})$在$(\begin{array}{l}{e,+∞}\end{array})$上是單調(diào)遞減.
∴當a>b>e時,有$f(\begin{array}{l}b\end{array})>f(\begin{array}{l}a\end{array})$,
即$\frac{lnb}>\frac{lna}{a}$.得證.
點評 本題考查不等式的證明,考查分析法的應用,考查分析問題解決問題的能力.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | 2 | B. | $\sqrt{2}$ | C. | $\sqrt{3}$ | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | M與N | B. | N與P | C. | M與Q | D. | N與Q |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | -4 | B. | $-\frac{1}{4}$ | C. | $\frac{1}{4}$ | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com