分析 (1)由已知利用三角函數(shù)周期公式即可計(jì)算得解.
(2)由(1)可得:f(x)=sin(2x-$\frac{3π}{4}$),由已知可求sinα,利用同角三角函數(shù)基本關(guān)系式可求cosα,進(jìn)而可求tanα=$\frac{sinα}{cosα}$的值.
解答 解:(1)∵f(x)=sin(ωx-$\frac{3π}{4}$)(ω>0)的最小值正周期為π,即:$\frac{2π}{ω}$=π,
∴ω=2,
(2)由(1)可得:f(x)=sin(2x-$\frac{3π}{4}$),
∴f($\frac{α}{2}$+$\frac{3π}{8}$)=sin[2($\frac{α}{2}$+$\frac{3π}{8}$)-$\frac{3π}{4}$]=sinα=$\frac{24}{25}$,
∵α∈(-$\frac{π}{2}$,$\frac{π}{2}$),
∴cosα=$\sqrt{1-si{n}^{2}α}$=$\frac{7}{25}$.
∴tanα=$\frac{sinα}{cosα}$=$\frac{24}{7}$.
點(diǎn)評(píng) 本題主要考查了三角函數(shù)周期公式,同角三角函數(shù)基本關(guān)系式的應(yīng)用,考查了計(jì)算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 2$\sqrt{3}$ | B. | $\sqrt{3}$ | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\frac{π}{2}$ | B. | π | C. | 2π | D. | 4π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\overrightarrow{AC}$ | B. | $\overrightarrow{CA}$ | C. | $\overrightarrow{BD}$ | D. | $\overrightarrow{DB}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | a<c<b | B. | a<b<c | C. | b<c<a | D. | b<a<c |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\frac{π}{16}$ | B. | $\frac{π}{8}$ | C. | $\frac{π}{4}$ | D. | $\frac{3π}{8}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | ?x0≥0且x0∈R,${2^{x_0}}>{x_0}^2$ | B. | ?x≥0且x∈R,2x≤x2 | ||
| C. | ?x0≥0且x0∈R,${2^{x_0}}≤{x_0}^2$ | D. | ?x0<0且x0∈R,${2^{x_0}}≤{x_0}^2$ |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com