欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

16.已知函數(shù)f(x)=2sin(x+$\frac{π}{6}$)-2cosx,x∈[$\frac{π}{2}$,π].
(1)若sinx=$\frac{4}{5}$,求函數(shù)f(x)的值;
(2)求函數(shù)f(x)的值域和對(duì)稱(chēng)軸.

分析 (1)利用三角恒等變換化簡(jiǎn)函數(shù)f(x),根據(jù)x∈[$\frac{π}{2}$,π]時(shí)sinx的值求出f(x)的值;
(2)根據(jù)f(x)的解析式求出x∈[$\frac{π}{2}$,π]時(shí)的值域,求出f(x)在x∈[$\frac{π}{2}$,π]內(nèi)對(duì)稱(chēng)軸是x=$\frac{2π}{3}$.

解答 解:(1)函數(shù)f(x)=2sin(x+$\frac{π}{6}$)-2cosx
=2sinxcos$\frac{π}{6}$+2cosxsin$\frac{π}{6}$-2cosx
=$\sqrt{3}$sinx-cosx
=2sin(x-$\frac{π}{6}$),
由x∈[$\frac{π}{2}$,π],且sinx=$\frac{4}{5}$,
∴cosx=-$\sqrt{1{-sin}^{2}x}$=-$\frac{3}{5}$;
∴函數(shù)f(x)=$\sqrt{3}$sinx-cosx
=$\sqrt{3}$×$\frac{4}{5}$-(-$\frac{3}{5}$)
=$\frac{4\sqrt{3}+3}{5}$;
(2)由函數(shù)f(x)=2sin(x-$\frac{π}{6}$),x∈[$\frac{π}{2}$,π],
∴x-$\frac{π}{6}$∈[$\frac{π}{3}$,$\frac{5π}{6}$],
∴sin(x-$\frac{π}{6}$)∈[$\frac{1}{2}$,1],
∴f(x)在x∈[$\frac{π}{2}$,π]的值域是[1,2];
且f(x)=2sin(x-$\frac{π}{6}$)對(duì)稱(chēng)軸是x=kπ+$\frac{2π}{3}$,k∈Z,
x∈[$\frac{π}{2}$,π],
∴對(duì)稱(chēng)軸是x=$\frac{2π}{3}$.

點(diǎn)評(píng) 本題考查了三角函數(shù)的化簡(jiǎn)與求值問(wèn)題,也考查了三角函數(shù)的圖象與性質(zhì)的應(yīng)用問(wèn)題,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知$\overrightarrow{a}$、$\overrightarrow$是平面向量,如果|$\overrightarrow{a}$|=3,|$\overrightarrow$|=4,|$\overrightarrow{a}$+$\overrightarrow$|=2,那么|$\overrightarrow{a}$-$\overrightarrow$|=(  )
A.$\sqrt{46}$B.7C.5D.$\sqrt{21}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知橢圓的左焦點(diǎn)為F1,有一小球A從F1處以速度v開(kāi)始沿直線(xiàn)運(yùn)動(dòng),經(jīng)橢圓壁反射(無(wú)論經(jīng)過(guò)幾次反射速度大小始終保持不變,小球半徑忽略不計(jì)),若小球第一次回到F1時(shí),它所用的最長(zhǎng)時(shí)間是最短時(shí)間的5倍,則橢圓的離心率為( 。
A.$\frac{1}{3}$B.$\frac{\sqrt{5}-1}{2}$C.$\frac{3}{5}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知數(shù)列{an}滿(mǎn)足an>0,a1=2,且(n+1)an+12=nan2+an(n∈N*).
(Ⅰ)證明:an>1;
(Ⅱ)證明:$\frac{{a}_{2}^{2}}{4}$+$\frac{{a}_{3}^{2}}{9}$+…+$\frac{{a}_{n}^{2}}{{n}^{2}}$<$\frac{9}{5}$(n≥2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.“|x-1|<2成立”是“x(x-3)<0成立”的( 。
A.充分必要條件B.充分而不必要條件
C.必要而不充分條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.若所有形如3a+$\sqrt{2}$b(a∈Z,b∈Z)的數(shù)組成集合A,判斷6-2$\sqrt{2}$是不是集合A中的元素.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.在平面直角坐標(biāo)系xOy中,已知圓x2+y2=5上有且僅有三個(gè)點(diǎn)到直線(xiàn)12x-5y+c=0的距離為1,則實(shí)數(shù)c的值是$±13(\sqrt{5}-1)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知數(shù)列{an}中,a1=$\frac{3}{5}$,且an=2-$\frac{1}{{{a_{n-1}}}}$(n≥2),數(shù)列{bn}滿(mǎn)足bn=$\frac{1}{{{a_n}-1}}$.
(1)求證:數(shù)列{bn}是等差數(shù)列;
(2)求數(shù)列{an}中最大項(xiàng)、最小項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,且兩個(gè)坐標(biāo)系取相等的長(zhǎng)度單位,已知直線(xiàn)l的參數(shù)方程為$\left\{\begin{array}{l}{x=tsinφ}\\{y=2+tcosφ}\end{array}\right.$(t為參數(shù),0<φ<π),曲線(xiàn)C的極坐標(biāo)方程為ρcos2θ=8sinθ.
(1)求直線(xiàn)l的普通方程和曲線(xiàn)C的直角坐標(biāo)方程;
(2)設(shè)直線(xiàn)l與曲線(xiàn)C相交于A、B兩點(diǎn),當(dāng)φ變化時(shí),求|AB|的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案