分析 (1)利用三角恒等變換化簡(jiǎn)函數(shù)f(x),根據(jù)x∈[$\frac{π}{2}$,π]時(shí)sinx的值求出f(x)的值;
(2)根據(jù)f(x)的解析式求出x∈[$\frac{π}{2}$,π]時(shí)的值域,求出f(x)在x∈[$\frac{π}{2}$,π]內(nèi)對(duì)稱(chēng)軸是x=$\frac{2π}{3}$.
解答 解:(1)函數(shù)f(x)=2sin(x+$\frac{π}{6}$)-2cosx
=2sinxcos$\frac{π}{6}$+2cosxsin$\frac{π}{6}$-2cosx
=$\sqrt{3}$sinx-cosx
=2sin(x-$\frac{π}{6}$),
由x∈[$\frac{π}{2}$,π],且sinx=$\frac{4}{5}$,
∴cosx=-$\sqrt{1{-sin}^{2}x}$=-$\frac{3}{5}$;
∴函數(shù)f(x)=$\sqrt{3}$sinx-cosx
=$\sqrt{3}$×$\frac{4}{5}$-(-$\frac{3}{5}$)
=$\frac{4\sqrt{3}+3}{5}$;
(2)由函數(shù)f(x)=2sin(x-$\frac{π}{6}$),x∈[$\frac{π}{2}$,π],
∴x-$\frac{π}{6}$∈[$\frac{π}{3}$,$\frac{5π}{6}$],
∴sin(x-$\frac{π}{6}$)∈[$\frac{1}{2}$,1],
∴f(x)在x∈[$\frac{π}{2}$,π]的值域是[1,2];
且f(x)=2sin(x-$\frac{π}{6}$)對(duì)稱(chēng)軸是x=kπ+$\frac{2π}{3}$,k∈Z,
x∈[$\frac{π}{2}$,π],
∴對(duì)稱(chēng)軸是x=$\frac{2π}{3}$.
點(diǎn)評(píng) 本題考查了三角函數(shù)的化簡(jiǎn)與求值問(wèn)題,也考查了三角函數(shù)的圖象與性質(zhì)的應(yīng)用問(wèn)題,是基礎(chǔ)題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\sqrt{46}$ | B. | 7 | C. | 5 | D. | $\sqrt{21}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\frac{1}{3}$ | B. | $\frac{\sqrt{5}-1}{2}$ | C. | $\frac{3}{5}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 充分必要條件 | B. | 充分而不必要條件 | ||
| C. | 必要而不充分條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com