已知橢圓
的離心率為
,且過點(diǎn)
,
為其右焦點(diǎn).
(1)求橢圓
的方程;
(2)設(shè)過點(diǎn)
的直線
與橢圓相交于
、
兩點(diǎn)(點(diǎn)
在
兩點(diǎn)之間),若
與
的面積相等,試求直線
的方程.
(1)
;(2)
。
解析試題分析:(1)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/1b/0/1pzk34.png" style="vertical-align:middle;" />,所以
,
.
設(shè)橢圓方程為
,又點(diǎn)
在橢圓上,所以
,
解得
,
所以橢圓方程為
.
(2)易知直線
的斜率存在,
設(shè)
的方程為
, 由
消去
整理,得
,
由題意知
,
解得
.
設(shè)
,
,則
, ①,
. ②.
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/2b/7/tsbps1.png" style="vertical-align:middle;" />與
的面積相等,
所以
,所以
. ③ 由①③消去
得
. ④
將
代入②得
. ⑤
將④代入⑤
,
整理化簡(jiǎn)得
,解得
,經(jīng)檢驗(yàn)成立.
所以直線
的方程為
.
考點(diǎn):橢圓的標(biāo)準(zhǔn)方程;橢圓的簡(jiǎn)單性質(zhì);直線與橢圓的綜合應(yīng)用。
點(diǎn)評(píng):本題考查了橢圓方程的求法,以及直線與橢圓的綜合應(yīng)用,為圓錐曲線的常規(guī)題,應(yīng)當(dāng)掌握?疾榱藢W(xué)生綜合分析問題、解決問題的能力,知識(shí)的遷移能力以及運(yùn)算能力。解題時(shí)要認(rèn)真審題,仔細(xì)分析。
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知橢圓
的中心在坐標(biāo)原點(diǎn)、對(duì)稱軸為坐標(biāo)軸,且拋物線
的焦點(diǎn)是它的一個(gè)焦點(diǎn),又點(diǎn)
在該橢圓上.
(1)求橢圓
的方程;
(2)若斜率為
直線
與橢圓
交于不同的兩點(diǎn)
,當(dāng)
面積的最大值時(shí),求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知直線l1:4x:-3y+6=0和直線l2x=-p/2:.若拋物線C:y2=2px上的點(diǎn)到直線l1和直線l2的距離之和的最小值為2.
(I )求拋物線C的方程;
(II)若以拋物線上任意一點(diǎn)M為切點(diǎn)的直線l與直線l2交于點(diǎn)N,試問在x軸上是否存 在定點(diǎn)Q,使Q點(diǎn)在以MN為直徑的圓上,若存在,求出點(diǎn)Q的坐標(biāo),若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓
方程為
,左、右焦點(diǎn)分別是
,若橢圓
上的點(diǎn)
到
的距離和等于
.
(Ⅰ)寫出橢圓
的方程和焦點(diǎn)坐標(biāo);
(Ⅱ)設(shè)點(diǎn)
是橢圓
的動(dòng)點(diǎn),求線段
中點(diǎn)
的軌跡方程;
(Ⅲ)直線
過定點(diǎn)
,且與橢圓
交于不同的兩點(diǎn)
,若
為銳角(
為坐標(biāo)原點(diǎn)),求直線
的斜率
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C:
+
=1(a>b>0)的一個(gè)焦點(diǎn)是F(1,0),且離心率為
.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)經(jīng)過點(diǎn)F的直線交橢圓C于M,N兩點(diǎn),線段MN的垂直平分線交y軸于點(diǎn)P(0,y0),求y0的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系
中,點(diǎn)
與點(diǎn)A(-1,1)關(guān)于原點(diǎn)O對(duì)稱,P是動(dòng)點(diǎn),且直線AP與BP的斜率之積等于
.![]()
(Ⅰ)求動(dòng)點(diǎn)P的軌跡方程;
(Ⅱ)設(shè)直線AP和BP分別與直線
交于點(diǎn)M,N,問:是否存在點(diǎn)P使得△PAB與△PMN的面積相等?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知拋物線
上橫坐標(biāo)為4的點(diǎn)到焦點(diǎn)的距離為5.![]()
(Ⅰ)求拋物線C的方程;
(Ⅱ)設(shè)直線
與拋物線C交于兩點(diǎn)
,
,且
(a為正常數(shù)).過弦AB的中點(diǎn)M作平行于x軸的直線交拋物線C于點(diǎn)D,連結(jié)AD、BD得到
.
(i)求實(shí)數(shù)a,b,k滿足的等量關(guān)系;
(ii)
的面積是否為定值?若為定值,求出此定值;若不是定值,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)
已知中心在原點(diǎn)O,焦點(diǎn)在x軸上的橢圓E過點(diǎn)(1,
),離心率為
.
(Ⅰ)求橢圓E的方程;
(Ⅱ)直線x+y+1=0與橢圓E相交于A、B(B在A上方)兩點(diǎn),問是否存在直線l,使l與橢圓相交于C、D(C在D上方)兩點(diǎn)且ABCD為平行四邊形,若存在,求直線l的方程與平行四邊形ABCD的面積;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
( 本小題滿分12分)如圖所示,已知圓
為圓上一動(dòng)點(diǎn),點(diǎn)
在
上,點(diǎn)
在
上,且滿足
的軌跡為曲線
。![]()
求曲線
的方程;
若過定點(diǎn)F(0,2)的直線交曲線
于不同的兩點(diǎn)
(點(diǎn)
在點(diǎn)
之間),且滿足
,求
的取值范圍。
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com