| A. | 1個(gè) | B. | 2個(gè) | C. | 3個(gè) | D. | 4個(gè) |
分析 利用線面垂直的判定定理求解.
解答
解:∵在矩形ABCD中,AB=8,BC=4,E為DC邊的中點(diǎn),
∴在折起過程中,D點(diǎn)在平面BCE上的投影如右圖.
∵DE與AC所成角不能為直角,
∴DE不會(huì)垂直于平面ACD,故①錯(cuò)誤;
只有D點(diǎn)投影位于Q2位置時(shí),即平面AED與平面AEB重合時(shí),
才有BE⊥CD,此時(shí)CD不垂直于平面AEBC,
故CD與平面BED不垂直,故②錯(cuò)誤;
BD與AC所成角不能成直線,
∴BD不能垂直于平面ACD,故③錯(cuò)誤;
∵AD⊥ED,并且在折起過程中,有AD⊥BC,
∴存在一個(gè)位置使AD⊥BE,
∴在折起過程中AD⊥平面BED,故④正確.
故選:A.
點(diǎn)評(píng) 本題考查命題真假的判斷,是中檔題,解題時(shí)要認(rèn)真審題,注意線面垂直的判定定理的合理運(yùn)用.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{3}{5}$ | B. | $\frac{2}{5}$ | C. | $\frac{4}{5}$ | D. | $\frac{5}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 4 | B. | -4 | C. | 2 | D. | -2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 12>5 | B. | 若a為正無理數(shù),則$\sqrt{a}$也是正無理數(shù) | ||
| C. | 正弦函數(shù)是周期函數(shù)嗎? | D. | π∈{1,2,3,4} |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com