已知函數(shù)![]()
(Ⅰ)求函數(shù)f (x)的定義域
(Ⅱ)確定函數(shù)f (x)在定義域上的單調(diào)性,并證明你的結(jié)論.
(Ⅲ)若x>0時(shí)
恒成立,求正整數(shù)k的最大值.
(Ⅰ)
(Ⅱ)在(-1,0)和(0,+
)上都是減函數(shù)
(Ⅲ)k的最大值為3
(1)定義域![]()
(2)![]()
單調(diào)遞減。
當(dāng)
,
令![]()
故
在(-1,0)上是減函數(shù)即
故此時(shí)
![]()
在(-1,0)和(0,+
)上都是減函數(shù)
(3)當(dāng)x>0時(shí),
恒成立,令![]()
又k為正整數(shù),∴k的最大值不大于3
下面證明當(dāng)k=3時(shí)
恒成立
當(dāng)x>0時(shí)
恒成立 令![]()
則
![]()
當(dāng)![]()
∴當(dāng)
取得最小值![]()
當(dāng)x>0時(shí)
恒成立 因此正整數(shù)k的最大值為3
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分14分)定義在D上的函數(shù)
,如果滿足;對任意
,存在常數(shù)
,都有
成立,則稱
是D上的有界函數(shù),其中M稱為函數(shù)
的上界。已知函數(shù)
,
當(dāng)
時(shí),求函數(shù)
在
上的值域,并判斷函數(shù)
在
上是否為有界函數(shù),請說明理由;若函數(shù)
在
上是以3為上界函數(shù)值,求實(shí)數(shù)
的取值范圍;若
,求函數(shù)
在
上的上界T的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆湖北省荊州市高一上學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù)![]()
(1)求
的定義域;
(2)當(dāng)
為何值時(shí),函數(shù)值大于1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年高一數(shù)學(xué)模擬試卷8(必修3)(解析版) 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com