科目: 來源: 題型:解答題
如圖,在幾何體ABCDE中,AB=AD=2,AB⊥AD,AE⊥平面ABD,M為線段BD的中點(diǎn),MC∥AE,且AE=MC=
.![]()
(1)求證:平面BCD⊥平面CDE;
(2)若N為線段DE的中點(diǎn),求證:平面AMN∥平面BEC.
查看答案和解析>>
科目: 來源: 題型:解答題
在四棱錐P-ABCD中,PA⊥平面ABCD,△ABC是正三角形,AC與BD的交點(diǎn)M恰好是AC的中點(diǎn),又∠CAD=30°,PA=AB=4,點(diǎn)N在線段PB上,且
=
.![]()
(1)求證:BD⊥PC;
(2)求證:MN∥平面PDC;
(3)設(shè)平面PAB∩平面PCD=l,試問直線l是否與直線CD平行,請(qǐng)說明理由.
查看答案和解析>>
科目: 來源: 題型:解答題
如圖,在棱長為
的正方體
中,點(diǎn)
是棱
的中點(diǎn),點(diǎn)
在棱
上,且滿足
.![]()
(1)求證:
;
(2)在棱
上確定一點(diǎn)
,使
、
、
、
四點(diǎn)共面,并求此時(shí)
的長;
(3)求平面
與平面
所成二面角的余弦值.
查看答案和解析>>
科目: 來源: 題型:解答題
如圖,在多面體ABCDEF中,底面ABCD是梯形,且AD=DC=CB=
AB.直角梯形ACEF中,
,
是銳角,且平面ACEF⊥平面ABCD.![]()
(1)求證:
;
(2)試判斷直線DF與平面BCE的位置關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目: 來源: 題型:解答題
如圖,在多面體ABCDEF中,底面ABCD是梯形,且AD=DC=CB=
AB.直角梯形ACEF中,
,
是銳角,且平面ACEF⊥平面ABCD.![]()
(1)求證:
;
(2)若直線DE與平面ACEF所成的角的正切值是
,試求
的余弦值.
查看答案和解析>>
科目: 來源: 題型:解答題
如圖,多面體ABC-A1B1C1中,三角形ABC是邊長為4的正三角形,AA1∥BB1∥CC1,AA1⊥平面ABC,AA1=BB1=2CC1=4.![]()
(1)若O是AB的中點(diǎn),求證:OC1⊥A1B1;
(2)在線段AB1上是否存在一點(diǎn)D,使得CD∥平面A1B1C1,若存在,確定點(diǎn)D的位置;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目: 來源: 題型:解答題
如圖,三棱柱ABC-A1B1C1的側(cè)棱AA1⊥底面ABC,∠ACB=90°,E是棱CC1的中點(diǎn),F是AB的中點(diǎn),AC=BC=1,AA1=2.![]()
(1)求證:CF∥平面AB1E;
(2)求三棱錐C-AB1E在底面AB1E上的高.
查看答案和解析>>
科目: 來源: 題型:解答題
如圖,已知四棱錐P-ABCD的底面為直角梯形,AB∥CD,∠DAB=90°,PA⊥底面ABCD,且PA=AD=DC=
AB=1,M是PB的中點(diǎn).![]()
(1)求證:AM=CM;
(2)若N是PC的中點(diǎn),求證:DN∥平面AMC.
查看答案和解析>>
科目: 來源: 題型:解答題
如圖,在三棱柱ABC-A1B1C1中,側(cè)面AA1C1C⊥底面ABC,AA1=A1C=AC=2,AB=BC,AB⊥BC,O為AC中點(diǎn).
(1)證明:A1O⊥平面ABC;
(2)若E是線段A1B上一點(diǎn),且滿足VE-BCC1=
·VABC-A1B1C1,求A1E的長度.
查看答案和解析>>
科目: 來源: 題型:解答題
如圖1,在直角梯形ABCD中,AD∥BC,∠ADC=90°,BA=BC.把△BAC沿AC折起到△PAC的位置,使得點(diǎn)P在平面ADC上的正投影O恰好落在線段AC上,如圖2所示.點(diǎn)E、F分別為棱PC,CD的中點(diǎn).
(1)求證:平面OEF∥平面APD;
(2)求證:CD⊥平面POF;
(3)在棱PC上是否存在一點(diǎn)M,使得M到P,O,C,F四點(diǎn)距離相等?請(qǐng)說明理由.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com