科目: 來源: 題型:解答題
已知橢圓
:
(
)過點
,且橢圓
的離心率為
.
(1)求橢圓
的方程;
(2)若動點
在直線
上,過
作直線交橢圓
于
兩點,且
為線段
中點,再過
作直線
.求直線
是否恒過定點,如果是則求出該定點的坐標,不是請說明理由。
查看答案和解析>>
科目: 來源: 題型:解答題
已知點
是拋物線
上不同的兩點,點
在拋物線
的準線
上,且焦點
到直線
的距離為
.
(I)求拋物線
的方程;
(2)現(xiàn)給出以下三個論斷:①直線
過焦點
;②直線
過原點
;③直線
平行
軸.
請你以其中的兩個論斷作為條件,余下的一個論斷作為結論,寫出一個正確的命題,并加以證明.
查看答案和解析>>
科目: 來源: 題型:解答題
(2013•浙江)已知拋物線C的頂點為O(0,0),焦點F(0,1)
(Ⅰ)求拋物線C的方程;
(Ⅱ)過F作直線交拋物線于A、B兩點.若直線OA、OB分別交直線l:y=x﹣2于M、N兩點,求|MN|的最小值.![]()
查看答案和解析>>
科目: 來源: 題型:解答題
已知動點M(x,y)到直線l:x = 4的距離是它到點N(1,0)的距離的2倍.
(1)求動點M的軌跡C的方程;
(2)過點P(0,3)的直線m與軌跡C交于A, B兩點. 若A是PB的中點, 求直線m的斜率.
查看答案和解析>>
科目: 來源: 題型:解答題
橢圓
的離心率
,
.![]()
(1)求橢圓C的方程;
(2)如圖,
是橢圓C的頂點,P是橢圓C上除頂點外的任意一點,直線DP交
軸于點N,直線AD交BP于點M。設BP的斜率為
,MN的斜率為
.證明:
為定值。
查看答案和解析>>
科目: 來源: 題型:解答題
(2013•浙江)如圖,點P(0,﹣1)是橢圓C1:
+
=1(a>b>0)的一個頂點,C1的長軸是圓C2:x2+y2=4的直徑,l1,l2是過點P且互相垂直的兩條直線,其中l(wèi)1交圓C2于A、B兩點,l2交橢圓C1于另一點D.
(1)求橢圓C1的方程;
(2)求△ABD面積的最大值時直線l1的方程.![]()
查看答案和解析>>
科目: 來源: 題型:解答題
如圖,橢圓
經(jīng)過點P(1.
),離心率e=
,直線l的方程為x=4.![]()
(1)求橢圓C的方程;
(2)AB是經(jīng)過右焦點F的任一弦(不經(jīng)過點P),設直線AB與直線l相交于點M,記PA,PB,PM的斜率分別為
.問:是否存在常數(shù)λ,使得
?若存在,求λ的值;若不存在,說明理由.
查看答案和解析>>
科目: 來源: 題型:解答題
(2013•湖北)如圖,已知橢圓C1與C2的中心在坐標原點O,長軸均為MN且在x軸上,短軸長分別為2m,2n(m>n),過原點且不與x軸重合的直線l與C1,C2的四個交點按縱坐標從大到小依次為A,B,C,D,記
,△BDM和△ABN的面積分別為S1和S2.
(1)當直線l與y軸重合時,若S1=λS2,求λ的值;
(2)當λ變化時,是否存在與坐標軸不重合的直線l,使得S1=λS2?并說明理由.![]()
查看答案和解析>>
科目: 來源: 題型:解答題
在平面直角坐標系xoy中,已知橢圓C1:
的左焦點為F1(-1,0),且點P(0,1)在C1上。
(1)求橢圓C1的方程;
(2)設直線l同時與橢圓C1和拋物線C2:
相切,求直線l的方程.
查看答案和解析>>
科目: 來源: 題型:解答題
在平面直角坐標系xOy中,已知點A(0,-1),B點在直線y = -3上,M點滿足
,
,M點的軌跡為曲線C。
(1)求C的方程;
(2)P為C上的動點,l為C在P點處得切線,求O點到l距離的最小值。
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com